Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -5,14 +5,9 @@ import spaces
|
|
5 |
|
6 |
from zoedepth.utils.misc import colorize, save_raw_16bit
|
7 |
from zoedepth.utils.geometry import depth_to_points, create_triangles
|
8 |
-
from marigold_depth_estimation import MarigoldPipeline
|
9 |
|
10 |
from PIL import Image
|
11 |
import numpy as np
|
12 |
-
import trimesh
|
13 |
-
from functools import partial
|
14 |
-
import tempfile
|
15 |
-
|
16 |
|
17 |
css = """
|
18 |
img {
|
@@ -21,97 +16,34 @@ img {
|
|
21 |
}
|
22 |
"""
|
23 |
|
24 |
-
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
25 |
-
|
26 |
-
|
27 |
-
CHECKPOINT = "prs-eth/marigold-v1-0"
|
28 |
-
pipe = MarigoldPipeline.from_pretrained(CHECKPOINT)
|
29 |
|
30 |
# ----------- Depth functions
|
31 |
-
@spaces.GPU(enable_queue=True)
|
32 |
def save_raw_16bit(depth, fpath="raw.png"):
|
33 |
if isinstance(depth, torch.Tensor):
|
34 |
depth = depth.squeeze().cpu().numpy()
|
35 |
|
36 |
-
assert isinstance(depth, np.ndarray), "Depth must be a torch tensor or numpy array"
|
37 |
-
assert depth.ndim == 2, "Depth must be 2D"
|
38 |
depth = depth * 256 # scale for 16-bit png
|
39 |
depth = depth.astype(np.uint16)
|
40 |
return depth
|
41 |
|
42 |
@spaces.GPU(enable_queue=True)
|
43 |
def process_image(image: Image.Image):
|
44 |
-
global
|
45 |
image = image.convert("RGB")
|
46 |
|
47 |
-
|
48 |
-
|
|
|
49 |
|
50 |
processed_array = save_raw_16bit(colorize(depth)[:, :, 0])
|
51 |
return Image.fromarray(processed_array)
|
52 |
|
53 |
-
# model.to(device)
|
54 |
-
|
55 |
-
# processed_array = pipe(image)["depth"]
|
56 |
-
# return Image.fromarray(processed_array)
|
57 |
-
|
58 |
# ----------- Depth functions
|
59 |
|
60 |
-
# ----------- Mesh functions
|
61 |
-
@spaces.GPU(enable_queue=True)
|
62 |
-
def depth_edges_mask(depth):
|
63 |
-
global model
|
64 |
-
"""Returns a mask of edges in the depth map.
|
65 |
-
Args:
|
66 |
-
depth: 2D numpy array of shape (H, W) with dtype float32.
|
67 |
-
Returns:
|
68 |
-
mask: 2D numpy array of shape (H, W) with dtype bool.
|
69 |
-
"""
|
70 |
-
# Compute the x and y gradients of the depth map.
|
71 |
-
depth_dx, depth_dy = np.gradient(depth)
|
72 |
-
# Compute the gradient magnitude.
|
73 |
-
depth_grad = np.sqrt(depth_dx ** 2 + depth_dy ** 2)
|
74 |
-
# Compute the edge mask.
|
75 |
-
mask = depth_grad > 0.05
|
76 |
-
return mask
|
77 |
-
|
78 |
-
@spaces.GPU(enable_queue=True)
|
79 |
-
def predict_depth(image):
|
80 |
-
global model
|
81 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
82 |
-
model.to(device)
|
83 |
-
depth = model.infer_pil(image)
|
84 |
-
return depth
|
85 |
-
|
86 |
-
@spaces.GPU(enable_queue=True)
|
87 |
-
def get_mesh(image: Image.Image, keep_edges=True):
|
88 |
-
image.thumbnail((1024,1024)) # limit the size of the input image
|
89 |
-
|
90 |
-
depth = predict_depth(image)
|
91 |
-
pts3d = depth_to_points(depth[None])
|
92 |
-
pts3d = pts3d.reshape(-1, 3)
|
93 |
-
|
94 |
-
# Create a trimesh mesh from the points
|
95 |
-
# Each pixel is connected to its 4 neighbors
|
96 |
-
# colors are the RGB values of the image
|
97 |
-
|
98 |
-
verts = pts3d.reshape(-1, 3)
|
99 |
-
image = np.array(image)
|
100 |
-
if keep_edges:
|
101 |
-
triangles = create_triangles(image.shape[0], image.shape[1])
|
102 |
-
else:
|
103 |
-
triangles = create_triangles(image.shape[0], image.shape[1], mask=~depth_edges_mask(depth))
|
104 |
-
|
105 |
-
colors = image.reshape(-1, 3)
|
106 |
-
mesh = trimesh.Trimesh(vertices=verts, faces=triangles, vertex_colors=colors)
|
107 |
-
|
108 |
-
# Save as glb
|
109 |
-
glb_file = tempfile.NamedTemporaryFile(suffix='.glb', delete=False)
|
110 |
-
glb_path = glb_file.name
|
111 |
-
mesh.export(glb_path)
|
112 |
-
return glb_path
|
113 |
-
|
114 |
-
# ----------- Mesh functions
|
115 |
|
116 |
title = "# ZoeDepth"
|
117 |
description = """Unofficial demo for **ZoeDepth: Zero-shot Transfer by Combining Relative and Metric Depth**."""
|
@@ -124,17 +56,7 @@ with gr.Blocks(css=css) as API:
|
|
124 |
inputs=gr.Image(label="Input Image", type='pil', height=500) # Input is an image
|
125 |
outputs=gr.Image(label="Depth Map", type='pil', height=500) # Output is also an image
|
126 |
generate_btn = gr.Button(value="Generate")
|
127 |
-
# generate_btn.click(partial(process_image, model), inputs=inputs, outputs=outputs, api_name="generate_depth")
|
128 |
generate_btn.click(process_image, inputs=inputs, outputs=outputs, api_name="generate_depth")
|
129 |
-
|
130 |
-
with gr.Tab("Image to 3D"):
|
131 |
-
with gr.Row():
|
132 |
-
with gr.Column():
|
133 |
-
inputs=[gr.Image(label="Input Image", type='pil', height=500), gr.Checkbox(label="Keep occlusion edges", value=True)]
|
134 |
-
outputs=gr.Model3D(label="3D Mesh", clear_color=[1.0, 1.0, 1.0, 1.0], height=500)
|
135 |
-
generate_btn = gr.Button(value="Generate")
|
136 |
-
# generate_btn.click(partial(get_mesh, model), inputs=inputs, outputs=outputs, api_name="generate_mesh")
|
137 |
-
generate_btn.click(get_mesh, inputs=inputs, outputs=outputs, api_name="generate_mesh")
|
138 |
|
139 |
if __name__ == '__main__':
|
140 |
API.launch()
|
|
|
5 |
|
6 |
from zoedepth.utils.misc import colorize, save_raw_16bit
|
7 |
from zoedepth.utils.geometry import depth_to_points, create_triangles
|
|
|
8 |
|
9 |
from PIL import Image
|
10 |
import numpy as np
|
|
|
|
|
|
|
|
|
11 |
|
12 |
css = """
|
13 |
img {
|
|
|
16 |
}
|
17 |
"""
|
18 |
|
19 |
+
# DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
20 |
+
MODEL = torch.hub.load('isl-org/ZoeDepth', "ZoeD_N", pretrained=True)#.to(DEVICE).eval()
|
|
|
|
|
|
|
21 |
|
22 |
# ----------- Depth functions
|
|
|
23 |
def save_raw_16bit(depth, fpath="raw.png"):
|
24 |
if isinstance(depth, torch.Tensor):
|
25 |
depth = depth.squeeze().cpu().numpy()
|
26 |
|
27 |
+
# assert isinstance(depth, np.ndarray), "Depth must be a torch tensor or numpy array"
|
28 |
+
# assert depth.ndim == 2, "Depth must be 2D"
|
29 |
depth = depth * 256 # scale for 16-bit png
|
30 |
depth = depth.astype(np.uint16)
|
31 |
return depth
|
32 |
|
33 |
@spaces.GPU(enable_queue=True)
|
34 |
def process_image(image: Image.Image):
|
35 |
+
global MODEL
|
36 |
image = image.convert("RGB")
|
37 |
|
38 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
39 |
+
MODEL.to(device)
|
40 |
+
depth = MODEL.infer_pil(image)
|
41 |
|
42 |
processed_array = save_raw_16bit(colorize(depth)[:, :, 0])
|
43 |
return Image.fromarray(processed_array)
|
44 |
|
|
|
|
|
|
|
|
|
|
|
45 |
# ----------- Depth functions
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
title = "# ZoeDepth"
|
49 |
description = """Unofficial demo for **ZoeDepth: Zero-shot Transfer by Combining Relative and Metric Depth**."""
|
|
|
56 |
inputs=gr.Image(label="Input Image", type='pil', height=500) # Input is an image
|
57 |
outputs=gr.Image(label="Depth Map", type='pil', height=500) # Output is also an image
|
58 |
generate_btn = gr.Button(value="Generate")
|
|
|
59 |
generate_btn.click(process_image, inputs=inputs, outputs=outputs, api_name="generate_depth")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
if __name__ == '__main__':
|
62 |
API.launch()
|