Spaces:
Sleeping
Sleeping
Commit
·
b3a1bf0
1
Parent(s):
81f5492
filtering plot
Browse files- app.py +62 -49
- src/utils.py +0 -20
app.py
CHANGED
|
@@ -5,7 +5,7 @@ import plotly.express as px
|
|
| 5 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 6 |
|
| 7 |
from src.assets.text_content import TITLE, INTRODUCTION_TEXT, SINGLE_A100_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT
|
| 8 |
-
from src.utils import restart_space, load_dataset_repo, make_clickable_model, make_clickable_score
|
| 9 |
from src.assets.css_html_js import custom_css
|
| 10 |
|
| 11 |
|
|
@@ -16,10 +16,11 @@ OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None)
|
|
| 16 |
COLUMNS_MAPPING = {
|
| 17 |
"model": "Model 🤗",
|
| 18 |
"backend.name": "Backend 🏭",
|
| 19 |
-
"backend.torch_dtype": "
|
| 20 |
"forward.peak_memory(MB)": "Peak Memory (MB) ⬇️",
|
| 21 |
"generate.throughput(tokens/s)": "Throughput (tokens/s) ⬆️",
|
| 22 |
-
"h4_score": "Average
|
|
|
|
| 23 |
}
|
| 24 |
COLUMNS_DATATYPES = ["markdown", "str", "str", "number", "number", "markdown"]
|
| 25 |
SORTING_COLUMN = ["Throughput (tokens/s) ⬆️"]
|
|
@@ -28,7 +29,7 @@ SORTING_COLUMN = ["Throughput (tokens/s) ⬆️"]
|
|
| 28 |
llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN)
|
| 29 |
|
| 30 |
|
| 31 |
-
def get_benchmark_df(benchmark):
|
| 32 |
if llm_perf_dataset_repo:
|
| 33 |
llm_perf_dataset_repo.git_pull()
|
| 34 |
|
|
@@ -39,41 +40,38 @@ def get_benchmark_df(benchmark):
|
|
| 39 |
f"./llm-perf-dataset/reports/additional_data.csv")
|
| 40 |
bench_df = bench_df.merge(scores_df, on="model", how="left")
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
| 45 |
# filter
|
| 46 |
bench_df = bench_df[list(COLUMNS_MAPPING.keys())]
|
| 47 |
# rename
|
| 48 |
bench_df.rename(columns=COLUMNS_MAPPING, inplace=True)
|
| 49 |
# sort
|
| 50 |
bench_df.sort_values(by=SORTING_COLUMN, ascending=False, inplace=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
return bench_df
|
| 53 |
|
| 54 |
|
| 55 |
-
|
| 56 |
-
single_A100_df = get_benchmark_df(benchmark="1xA100-80GB")
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
def get_benchmark_plot(benchmark):
|
| 60 |
-
if llm_perf_dataset_repo:
|
| 61 |
-
llm_perf_dataset_repo.git_pull()
|
| 62 |
-
|
| 63 |
-
# load
|
| 64 |
-
bench_df = pd.read_csv(
|
| 65 |
-
f"./llm-perf-dataset/reports/{benchmark}.csv")
|
| 66 |
-
scores_df = pd.read_csv(
|
| 67 |
-
f"./llm-perf-dataset/reports/additional_data.csv")
|
| 68 |
-
bench_df = bench_df.merge(scores_df, on="model", how="left")
|
| 69 |
|
|
|
|
| 70 |
bench_df = bench_df[bench_df["generate.latency(s)"] < 100]
|
| 71 |
|
| 72 |
fig = px.scatter(
|
| 73 |
-
bench_df, x="
|
| 74 |
color='model_type', symbol='backend.name', size='forward.peak_memory(MB)',
|
| 75 |
custom_data=['model', 'backend.name', 'backend.torch_dtype',
|
| 76 |
'forward.peak_memory(MB)', 'generate.throughput(tokens/s)'],
|
|
|
|
|
|
|
|
|
|
| 77 |
)
|
| 78 |
|
| 79 |
fig.update_layout(
|
|
@@ -83,11 +81,18 @@ def get_benchmark_plot(benchmark):
|
|
| 83 |
'xanchor': 'center',
|
| 84 |
'yanchor': 'top'
|
| 85 |
},
|
| 86 |
-
xaxis_title="
|
| 87 |
-
yaxis_title="
|
| 88 |
-
legend_title="Model Type
|
| 89 |
-
width=
|
| 90 |
height=600,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
)
|
| 92 |
|
| 93 |
fig.update_traces(
|
|
@@ -97,16 +102,35 @@ def get_benchmark_plot(benchmark):
|
|
| 97 |
"Datatype: %{customdata[2]}",
|
| 98 |
"Peak Memory (MB): %{customdata[3]}",
|
| 99 |
"Throughput (tokens/s): %{customdata[4]}",
|
| 100 |
-
"
|
| 101 |
-
"Average
|
| 102 |
])
|
| 103 |
)
|
| 104 |
|
| 105 |
return fig
|
| 106 |
|
| 107 |
|
| 108 |
-
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
# Demo interface
|
| 112 |
demo = gr.Blocks(css=custom_css)
|
|
@@ -142,7 +166,7 @@ with demo:
|
|
| 142 |
elem_id="datatype-checkboxes",
|
| 143 |
)
|
| 144 |
threshold_slider = gr.Slider(
|
| 145 |
-
label="Average
|
| 146 |
info="lter by minimum average H4 score",
|
| 147 |
value=0.0,
|
| 148 |
elem_id="threshold-slider",
|
|
@@ -161,28 +185,11 @@ with demo:
|
|
| 161 |
|
| 162 |
# Original leaderboard table
|
| 163 |
single_A100_leaderboard = gr.components.Dataframe(
|
| 164 |
-
value=
|
| 165 |
datatype=COLUMNS_DATATYPES,
|
| 166 |
headers=list(COLUMNS_MAPPING.values()),
|
| 167 |
elem_id="1xA100-table",
|
| 168 |
)
|
| 169 |
-
# Dummy dataframe for search
|
| 170 |
-
single_A100_for_search = gr.components.Dataframe(
|
| 171 |
-
value=single_A100_df,
|
| 172 |
-
datatype=COLUMNS_DATATYPES,
|
| 173 |
-
headers=list(COLUMNS_MAPPING.values()),
|
| 174 |
-
max_rows=None,
|
| 175 |
-
visible=False,
|
| 176 |
-
)
|
| 177 |
-
|
| 178 |
-
submit_button.click(
|
| 179 |
-
submit_query,
|
| 180 |
-
[
|
| 181 |
-
search_bar, backend_checkboxes, datatype_checkboxes, threshold_slider,
|
| 182 |
-
single_A100_for_search
|
| 183 |
-
],
|
| 184 |
-
[single_A100_leaderboard]
|
| 185 |
-
)
|
| 186 |
|
| 187 |
with gr.TabItem("🖥️ A100-80GB Plot 📊", id=1):
|
| 188 |
# Original leaderboard plot
|
|
@@ -195,6 +202,12 @@ with demo:
|
|
| 195 |
show_label=False,
|
| 196 |
)
|
| 197 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
with gr.Row():
|
| 199 |
with gr.Accordion("📙 Citation", open=False):
|
| 200 |
citation_button = gr.Textbox(
|
|
|
|
| 5 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 6 |
|
| 7 |
from src.assets.text_content import TITLE, INTRODUCTION_TEXT, SINGLE_A100_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT
|
| 8 |
+
from src.utils import restart_space, load_dataset_repo, make_clickable_model, make_clickable_score
|
| 9 |
from src.assets.css_html_js import custom_css
|
| 10 |
|
| 11 |
|
|
|
|
| 16 |
COLUMNS_MAPPING = {
|
| 17 |
"model": "Model 🤗",
|
| 18 |
"backend.name": "Backend 🏭",
|
| 19 |
+
"backend.torch_dtype": "Load Dtype 📥",
|
| 20 |
"forward.peak_memory(MB)": "Peak Memory (MB) ⬇️",
|
| 21 |
"generate.throughput(tokens/s)": "Throughput (tokens/s) ⬆️",
|
| 22 |
+
"h4_score": "Average Open LLM Score ⬆️",
|
| 23 |
+
|
| 24 |
}
|
| 25 |
COLUMNS_DATATYPES = ["markdown", "str", "str", "number", "number", "markdown"]
|
| 26 |
SORTING_COLUMN = ["Throughput (tokens/s) ⬆️"]
|
|
|
|
| 29 |
llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN)
|
| 30 |
|
| 31 |
|
| 32 |
+
def get_benchmark_df(benchmark="1xA100-80GB"):
|
| 33 |
if llm_perf_dataset_repo:
|
| 34 |
llm_perf_dataset_repo.git_pull()
|
| 35 |
|
|
|
|
| 40 |
f"./llm-perf-dataset/reports/additional_data.csv")
|
| 41 |
bench_df = bench_df.merge(scores_df, on="model", how="left")
|
| 42 |
|
| 43 |
+
return bench_df
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def get_benchmark_table(bench_df):
|
| 47 |
+
|
| 48 |
# filter
|
| 49 |
bench_df = bench_df[list(COLUMNS_MAPPING.keys())]
|
| 50 |
# rename
|
| 51 |
bench_df.rename(columns=COLUMNS_MAPPING, inplace=True)
|
| 52 |
# sort
|
| 53 |
bench_df.sort_values(by=SORTING_COLUMN, ascending=False, inplace=True)
|
| 54 |
+
# transform
|
| 55 |
+
bench_df["Model 🤗"] = bench_df["Model 🤗"].apply(make_clickable_model)
|
| 56 |
+
bench_df["Average Open LLM Score ⬆️"] = bench_df["Average Open LLM Score ⬆️"].apply(
|
| 57 |
+
make_clickable_score)
|
| 58 |
|
| 59 |
return bench_df
|
| 60 |
|
| 61 |
|
| 62 |
+
def get_benchmark_plot(bench_df):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
+
# untill falcon gets fixed / natively supported
|
| 65 |
bench_df = bench_df[bench_df["generate.latency(s)"] < 100]
|
| 66 |
|
| 67 |
fig = px.scatter(
|
| 68 |
+
bench_df, x="generate.latency(s)", y="h4_score",
|
| 69 |
color='model_type', symbol='backend.name', size='forward.peak_memory(MB)',
|
| 70 |
custom_data=['model', 'backend.name', 'backend.torch_dtype',
|
| 71 |
'forward.peak_memory(MB)', 'generate.throughput(tokens/s)'],
|
| 72 |
+
symbol_sequence=['triangle-up', 'circle'],
|
| 73 |
+
# as many distinct colors as there are model_type,backend.name couples
|
| 74 |
+
color_discrete_sequence=px.colors.qualitative.Light24,
|
| 75 |
)
|
| 76 |
|
| 77 |
fig.update_layout(
|
|
|
|
| 81 |
'xanchor': 'center',
|
| 82 |
'yanchor': 'top'
|
| 83 |
},
|
| 84 |
+
xaxis_title="Per 1000 Tokens Latency (s)",
|
| 85 |
+
yaxis_title="Average Open LLM Score",
|
| 86 |
+
legend_title="Model Type and Backend",
|
| 87 |
+
width=1000,
|
| 88 |
height=600,
|
| 89 |
+
legend=dict(
|
| 90 |
+
orientation="h",
|
| 91 |
+
yanchor="bottom",
|
| 92 |
+
y=-0.35,
|
| 93 |
+
xanchor="center",
|
| 94 |
+
x=0.5
|
| 95 |
+
)
|
| 96 |
)
|
| 97 |
|
| 98 |
fig.update_traces(
|
|
|
|
| 102 |
"Datatype: %{customdata[2]}",
|
| 103 |
"Peak Memory (MB): %{customdata[3]}",
|
| 104 |
"Throughput (tokens/s): %{customdata[4]}",
|
| 105 |
+
"Per 1000 Tokens Latency (s): %{y}",
|
| 106 |
+
"Average Open LLM Score: %{x}",
|
| 107 |
])
|
| 108 |
)
|
| 109 |
|
| 110 |
return fig
|
| 111 |
|
| 112 |
|
| 113 |
+
def filter_query(text, backends, datatypes, threshold, benchmark="1xA100-80GB"):
|
| 114 |
+
|
| 115 |
+
raw_df = get_benchmark_df(benchmark=benchmark)
|
| 116 |
+
|
| 117 |
+
filtered_df = raw_df[
|
| 118 |
+
raw_df["model"].str.lower().str.contains(text.lower()) &
|
| 119 |
+
raw_df["backend.name"].isin(backends) &
|
| 120 |
+
raw_df["Dbackend.torch_dtype"].isin(datatypes) &
|
| 121 |
+
(raw_df["h4_score"] >= threshold)
|
| 122 |
+
]
|
| 123 |
+
|
| 124 |
+
filtered_table = get_benchmark_table(filtered_df)
|
| 125 |
+
filtered_plot = get_benchmark_plot(filtered_df)
|
| 126 |
+
|
| 127 |
+
return filtered_table, filtered_plot
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
# Dataframes
|
| 131 |
+
single_A100_df = get_benchmark_df(benchmark="1xA100-80GB")
|
| 132 |
+
single_A100_table = get_benchmark_table(single_A100_df)
|
| 133 |
+
single_A100_plot = get_benchmark_plot(single_A100_df)
|
| 134 |
|
| 135 |
# Demo interface
|
| 136 |
demo = gr.Blocks(css=custom_css)
|
|
|
|
| 166 |
elem_id="datatype-checkboxes",
|
| 167 |
)
|
| 168 |
threshold_slider = gr.Slider(
|
| 169 |
+
label="Average Open LLM Score 📈",
|
| 170 |
info="lter by minimum average H4 score",
|
| 171 |
value=0.0,
|
| 172 |
elem_id="threshold-slider",
|
|
|
|
| 185 |
|
| 186 |
# Original leaderboard table
|
| 187 |
single_A100_leaderboard = gr.components.Dataframe(
|
| 188 |
+
value=single_A100_table,
|
| 189 |
datatype=COLUMNS_DATATYPES,
|
| 190 |
headers=list(COLUMNS_MAPPING.values()),
|
| 191 |
elem_id="1xA100-table",
|
| 192 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
|
| 194 |
with gr.TabItem("🖥️ A100-80GB Plot 📊", id=1):
|
| 195 |
# Original leaderboard plot
|
|
|
|
| 202 |
show_label=False,
|
| 203 |
)
|
| 204 |
|
| 205 |
+
submit_button.click(
|
| 206 |
+
filter_query,
|
| 207 |
+
[search_bar, backend_checkboxes, datatype_checkboxes, threshold_slider],
|
| 208 |
+
[single_A100_leaderboard]
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
with gr.Row():
|
| 212 |
with gr.Accordion("📙 Citation", open=False):
|
| 213 |
citation_button = gr.Textbox(
|
src/utils.py
CHANGED
|
@@ -66,23 +66,3 @@ def make_clickable_model(model_name):
|
|
| 66 |
def make_clickable_score(score):
|
| 67 |
link = f"https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard"
|
| 68 |
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{score}</a>'
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
def extract_score_from_clickable(clickable_score) -> float:
|
| 72 |
-
return float(re.findall(r"\d+\.\d+", clickable_score)[-1])
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
def submit_query(text, backends, datatypes, threshold, raw_df):
|
| 76 |
-
raw_df["Average H4 Score ⬆️"] = raw_df["Average H4 Score ⬆️"].apply(
|
| 77 |
-
extract_score_from_clickable)
|
| 78 |
-
|
| 79 |
-
filtered_df = raw_df[
|
| 80 |
-
raw_df["Model 🤗"].str.lower().str.contains(text.lower()) &
|
| 81 |
-
raw_df["Backend 🏭"].isin(backends) &
|
| 82 |
-
raw_df["Datatype 📥"].isin(datatypes) &
|
| 83 |
-
(raw_df["Average H4 Score ⬆️"] >= threshold)
|
| 84 |
-
]
|
| 85 |
-
|
| 86 |
-
filtered_df["Average H4 Score ⬆️"] = filtered_df["Average H4 Score ⬆️"].apply(
|
| 87 |
-
make_clickable_score)
|
| 88 |
-
return filtered_df
|
|
|
|
| 66 |
def make_clickable_score(score):
|
| 67 |
link = f"https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard"
|
| 68 |
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{score}</a>'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|