Spaces:
Sleeping
Sleeping
Commit
Β·
2460b35
1
Parent(s):
bb5689a
added exllama v2
Browse files- app.py +7 -1
- src/bettertransformer.py +0 -1
- src/control_panel.py +4 -0
- src/exllama.py +148 -0
app.py
CHANGED
|
@@ -5,8 +5,9 @@ import gradio as gr
|
|
| 5 |
from src.control_panel import create_control_panel, create_control_callback
|
| 6 |
from src.latency_score_memory import create_lat_score_mem_plot
|
| 7 |
from src.leaderboard import create_leaderboard_table
|
| 8 |
-
from src.flashattentionv2 import create_fa2_plots
|
| 9 |
from src.bettertransformer import create_bt_plots
|
|
|
|
|
|
|
| 10 |
from src.llm_perf import get_llm_perf_df
|
| 11 |
from src.assets import custom_css
|
| 12 |
from src.content import (
|
|
@@ -59,6 +60,9 @@ with demo:
|
|
| 59 |
bt_prefill_plot, bt_decode_plot = create_bt_plots(llm_perf_df)
|
| 60 |
with gr.TabItem("FlashAttentionV2 Speedup π", id=3):
|
| 61 |
fa2_prefill_plot, fa2_decode_plot = create_fa2_plots(llm_perf_df)
|
|
|
|
|
|
|
|
|
|
| 62 |
####################### CONTROL CALLBACK #######################
|
| 63 |
create_control_callback(
|
| 64 |
filter_button,
|
|
@@ -78,6 +82,8 @@ with demo:
|
|
| 78 |
bt_decode_plot,
|
| 79 |
fa2_prefill_plot,
|
| 80 |
fa2_decode_plot,
|
|
|
|
|
|
|
| 81 |
)
|
| 82 |
####################### ABOUT TAB #######################
|
| 83 |
with gr.TabItem("About π", id=3):
|
|
|
|
| 5 |
from src.control_panel import create_control_panel, create_control_callback
|
| 6 |
from src.latency_score_memory import create_lat_score_mem_plot
|
| 7 |
from src.leaderboard import create_leaderboard_table
|
|
|
|
| 8 |
from src.bettertransformer import create_bt_plots
|
| 9 |
+
from src.flashattentionv2 import create_fa2_plots
|
| 10 |
+
from src.exllama import create_exllama_plots
|
| 11 |
from src.llm_perf import get_llm_perf_df
|
| 12 |
from src.assets import custom_css
|
| 13 |
from src.content import (
|
|
|
|
| 60 |
bt_prefill_plot, bt_decode_plot = create_bt_plots(llm_perf_df)
|
| 61 |
with gr.TabItem("FlashAttentionV2 Speedup π", id=3):
|
| 62 |
fa2_prefill_plot, fa2_decode_plot = create_fa2_plots(llm_perf_df)
|
| 63 |
+
with gr.TabItem("Exllama Speedup π", id=4):
|
| 64 |
+
exllama_prefill_plot, exllama_decode_plot = create_exllama_plots(llm_perf_df)
|
| 65 |
+
|
| 66 |
####################### CONTROL CALLBACK #######################
|
| 67 |
create_control_callback(
|
| 68 |
filter_button,
|
|
|
|
| 82 |
bt_decode_plot,
|
| 83 |
fa2_prefill_plot,
|
| 84 |
fa2_decode_plot,
|
| 85 |
+
exllama_prefill_plot,
|
| 86 |
+
exllama_decode_plot,
|
| 87 |
)
|
| 88 |
####################### ABOUT TAB #######################
|
| 89 |
with gr.TabItem("About π", id=3):
|
src/bettertransformer.py
CHANGED
|
@@ -47,7 +47,6 @@ def get_bt_df(llm_perf_df):
|
|
| 47 |
bt_df["Decode Throughput Speedup (%)"] = (
|
| 48 |
(bt_df["Decode Throughput (tokens/s) BetterTransformer"] / bt_df["Decode Throughput (tokens/s)"]) * 100
|
| 49 |
).round(2) - 100
|
| 50 |
-
|
| 51 |
# filter speedups > 1000%
|
| 52 |
bt_df = bt_df[bt_df["Prefill Latency Speedup (%)"] < 1000]
|
| 53 |
bt_df = bt_df[bt_df["Decode Throughput Speedup (%)"] < 1000]
|
|
|
|
| 47 |
bt_df["Decode Throughput Speedup (%)"] = (
|
| 48 |
(bt_df["Decode Throughput (tokens/s) BetterTransformer"] / bt_df["Decode Throughput (tokens/s)"]) * 100
|
| 49 |
).round(2) - 100
|
|
|
|
| 50 |
# filter speedups > 1000%
|
| 51 |
bt_df = bt_df[bt_df["Prefill Latency Speedup (%)"] < 1000]
|
| 52 |
bt_df = bt_df[bt_df["Decode Throughput Speedup (%)"] < 1000]
|
src/control_panel.py
CHANGED
|
@@ -144,6 +144,8 @@ def create_control_callback(
|
|
| 144 |
bt_decode_plot,
|
| 145 |
fa2_prefill_plot,
|
| 146 |
fa2_decode_plot,
|
|
|
|
|
|
|
| 147 |
):
|
| 148 |
filter_button.click(
|
| 149 |
fn=filter_fn,
|
|
@@ -164,5 +166,7 @@ def create_control_callback(
|
|
| 164 |
bt_decode_plot,
|
| 165 |
fa2_prefill_plot,
|
| 166 |
fa2_decode_plot,
|
|
|
|
|
|
|
| 167 |
],
|
| 168 |
)
|
|
|
|
| 144 |
bt_decode_plot,
|
| 145 |
fa2_prefill_plot,
|
| 146 |
fa2_decode_plot,
|
| 147 |
+
exllama_prefill_plot,
|
| 148 |
+
exllama_decode_plot,
|
| 149 |
):
|
| 150 |
filter_button.click(
|
| 151 |
fn=filter_fn,
|
|
|
|
| 166 |
bt_decode_plot,
|
| 167 |
fa2_prefill_plot,
|
| 168 |
fa2_decode_plot,
|
| 169 |
+
exllama_prefill_plot,
|
| 170 |
+
exllama_decode_plot,
|
| 171 |
],
|
| 172 |
)
|
src/exllama.py
ADDED
|
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import plotly.express as px
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
EXLLAMA_DATA = [
|
| 7 |
+
# open llm
|
| 8 |
+
"Model π€",
|
| 9 |
+
"Arch ποΈ",
|
| 10 |
+
"DType π₯",
|
| 11 |
+
"Backend π",
|
| 12 |
+
"Params (B)",
|
| 13 |
+
"Open LLM Score (%)",
|
| 14 |
+
# deployment settings
|
| 15 |
+
"DType π₯",
|
| 16 |
+
"Backend π",
|
| 17 |
+
"Quantization ποΈ",
|
| 18 |
+
# primary measurements
|
| 19 |
+
"Prefill Latency (s)",
|
| 20 |
+
"Prefill Latency (s) Exllama",
|
| 21 |
+
"Decode Throughput (tokens/s)",
|
| 22 |
+
"Decode Throughput (tokens/s) Exllama",
|
| 23 |
+
"E2E Throughput (tokens/s)",
|
| 24 |
+
"E2E Throughput (tokens/s) Exllama",
|
| 25 |
+
# speedups
|
| 26 |
+
"Prefill Latency Speedup (%)",
|
| 27 |
+
"Decode Throughput Speedup (%)",
|
| 28 |
+
]
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def get_exllama_df(llm_perf_df):
|
| 32 |
+
exllama_df = llm_perf_df.copy()
|
| 33 |
+
# seperate original model experiments from Exllama experiments
|
| 34 |
+
gptq_df = exllama_df[(exllama_df["Quantization ποΈ"] == "GPTQ.4bit")]
|
| 35 |
+
exllamav1_df = exllama_df[(exllama_df["Quantization ποΈ"] == "GPTQ.4bit+ExllamaV1")]
|
| 36 |
+
exllamav2_df = exllama_df[(exllama_df["Quantization ποΈ"] == "GPTQ.4bit+ExllamaV2")]
|
| 37 |
+
# merge the three dataframes
|
| 38 |
+
exllamav1_df = pd.merge(
|
| 39 |
+
gptq_df,
|
| 40 |
+
exllamav1_df,
|
| 41 |
+
on=["Model π€"],
|
| 42 |
+
suffixes=["", " Exllama"],
|
| 43 |
+
)
|
| 44 |
+
exllamav2_df = pd.merge(
|
| 45 |
+
gptq_df,
|
| 46 |
+
exllamav2_df,
|
| 47 |
+
on=["Model π€"],
|
| 48 |
+
suffixes=["", " Exllama"],
|
| 49 |
+
)
|
| 50 |
+
# concat the two dataframes row-wise
|
| 51 |
+
exllama_df = pd.concat([exllamav1_df, exllamav2_df])
|
| 52 |
+
exllama_df["Quantization ποΈ"] = exllama_df["Quantization ποΈ Exllama"]
|
| 53 |
+
# compute speedups
|
| 54 |
+
exllama_df["Prefill Latency Speedup (%)"] = (
|
| 55 |
+
(exllama_df["Prefill Latency (s)"] / exllama_df["Prefill Latency (s) Exllama"]) * 100
|
| 56 |
+
).round(2) - 100
|
| 57 |
+
exllama_df["Decode Throughput Speedup (%)"] = (
|
| 58 |
+
(exllama_df["Decode Throughput (tokens/s) Exllama"] / exllama_df["Decode Throughput (tokens/s)"]) * 100
|
| 59 |
+
).round(2) - 100
|
| 60 |
+
# filter speedups > 1000%
|
| 61 |
+
exllama_df = exllama_df[exllama_df["Prefill Latency Speedup (%)"] < 1000]
|
| 62 |
+
exllama_df = exllama_df[exllama_df["Decode Throughput Speedup (%)"] < 1000]
|
| 63 |
+
|
| 64 |
+
return exllama_df
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def get_exllama_decode_fig(llm_perf_df):
|
| 68 |
+
exllama_df = get_exllama_df(llm_perf_df)
|
| 69 |
+
# plot
|
| 70 |
+
decode_fig = px.box(
|
| 71 |
+
exllama_df,
|
| 72 |
+
x="Arch ποΈ",
|
| 73 |
+
y="Decode Throughput Speedup (%)",
|
| 74 |
+
color_discrete_sequence=px.colors.qualitative.Light24,
|
| 75 |
+
custom_data=EXLLAMA_DATA,
|
| 76 |
+
color="Quantization ποΈ Exllama",
|
| 77 |
+
points="all",
|
| 78 |
+
)
|
| 79 |
+
# add hover data
|
| 80 |
+
decode_fig.update_traces(
|
| 81 |
+
hovertemplate="<br>".join([f"<b>{column}:</b> %{{customdata[{i}]}}" for i, column in enumerate(EXLLAMA_DATA)])
|
| 82 |
+
)
|
| 83 |
+
# add layout
|
| 84 |
+
decode_fig.update_layout(
|
| 85 |
+
title={
|
| 86 |
+
"text": "Decode Throughput Speedup per Architecture",
|
| 87 |
+
"y": 0.95,
|
| 88 |
+
"x": 0.5,
|
| 89 |
+
"xanchor": "center",
|
| 90 |
+
"yanchor": "top",
|
| 91 |
+
},
|
| 92 |
+
xaxis_title="LLM Architecture",
|
| 93 |
+
yaxis_title="Decode Speedup (%)",
|
| 94 |
+
legend_title="Quantization Scheme",
|
| 95 |
+
width=1200,
|
| 96 |
+
height=600,
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
return decode_fig
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def get_exllama_prefill_fig(llm_perf_df):
|
| 103 |
+
exllama_df = get_exllama_df(llm_perf_df)
|
| 104 |
+
# plot
|
| 105 |
+
prefill_fig = px.box(
|
| 106 |
+
exllama_df,
|
| 107 |
+
x="Arch ποΈ",
|
| 108 |
+
y="Prefill Latency Speedup (%)",
|
| 109 |
+
color_discrete_sequence=px.colors.qualitative.Light24,
|
| 110 |
+
custom_data=EXLLAMA_DATA,
|
| 111 |
+
color="Quantization ποΈ Exllama",
|
| 112 |
+
points="all",
|
| 113 |
+
)
|
| 114 |
+
# add hover data
|
| 115 |
+
prefill_fig.update_traces(
|
| 116 |
+
hovertemplate="<br>".join([f"<b>{column}:</b> %{{customdata[{i}]}}" for i, column in enumerate(EXLLAMA_DATA)])
|
| 117 |
+
)
|
| 118 |
+
# add layout
|
| 119 |
+
prefill_fig.update_layout(
|
| 120 |
+
title={
|
| 121 |
+
"text": "Prefill Latency Speedup per Architecture",
|
| 122 |
+
"y": 0.95,
|
| 123 |
+
"x": 0.5,
|
| 124 |
+
"xanchor": "center",
|
| 125 |
+
"yanchor": "top",
|
| 126 |
+
},
|
| 127 |
+
xaxis_title="LLM Architecture",
|
| 128 |
+
yaxis_title="Prefill Speedup (%)",
|
| 129 |
+
legend_title="Quantization Scheme",
|
| 130 |
+
width=1200,
|
| 131 |
+
height=600,
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
return prefill_fig
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
def create_exllama_plots(llm_perf_df):
|
| 138 |
+
# descriptive text
|
| 139 |
+
gr.HTML("π Hover over the points π for additional information.", elem_id="text")
|
| 140 |
+
# get figures
|
| 141 |
+
prefill_fig = get_exllama_prefill_fig(llm_perf_df)
|
| 142 |
+
decode_fig = get_exllama_decode_fig(llm_perf_df)
|
| 143 |
+
|
| 144 |
+
# create plots
|
| 145 |
+
prefill_plot = gr.components.Plot(value=prefill_fig, elem_id="plot", show_label=False)
|
| 146 |
+
decode_plot = gr.components.Plot(value=decode_fig, elem_id="plot", show_label=False)
|
| 147 |
+
|
| 148 |
+
return prefill_plot, decode_plot
|