|
import os |
|
import gradio as gr |
|
import pandas as pd |
|
from apscheduler.schedulers.background import BackgroundScheduler |
|
|
|
from src.assets.text_content import TITLE, INTRODUCTION_TEXT |
|
from src.assets.css_html_js import custom_css, get_window_url_params |
|
from src.utils import restart_space, load_dataset_repo, make_clickable_model |
|
|
|
|
|
LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard" |
|
LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset" |
|
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN") |
|
|
|
llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN) |
|
|
|
|
|
def get_vanilla_benchmark_df(): |
|
if llm_perf_dataset_repo: |
|
llm_perf_dataset_repo.git_pull() |
|
|
|
df = pd.read_csv( |
|
"./llm-perf-dataset/reports/cuda_1_100/inference_report.csv") |
|
|
|
df = df[["model", "backend.name", "backend.torch_dtype", "backend.quantization", |
|
"generate.latency(s)", "generate.throughput(tokens/s)"]] |
|
|
|
df["model"] = df["model"].apply(make_clickable_model) |
|
|
|
df.rename(columns={ |
|
"model": "Model", |
|
"backend.name": "Backend 🏭", |
|
"backend.torch_dtype": "Load dtype", |
|
"backend.quantization": "Quantization 🗜️", |
|
"generate.latency(s)": "Latency (s) ⬇️", |
|
"generate.throughput(tokens/s)": "Throughput (tokens/s) ⬆️", |
|
}, inplace=True) |
|
|
|
df.sort_values(by=["Throughput (tokens/s) ⬆️"], |
|
ascending=False, inplace=True) |
|
|
|
return df |
|
|
|
|
|
|
|
demo = gr.Blocks(css=custom_css) |
|
with demo: |
|
gr.HTML(TITLE) |
|
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
with gr.TabItem("Vanilla Benchmark", elem_id="vanilla-benchmark", id=0): |
|
|
|
vanilla_benchmark_df = get_vanilla_benchmark_df() |
|
leaderboard_table_lite = gr.components.Dataframe( |
|
value=vanilla_benchmark_df, |
|
headers=vanilla_benchmark_df.columns.tolist(), |
|
elem_id="vanilla-benchmark", |
|
) |
|
|
|
|
|
|
|
scheduler = BackgroundScheduler() |
|
scheduler.add_job(restart_space, "interval", seconds=3600) |
|
scheduler.start() |
|
|
|
|
|
demo.queue(concurrency_count=40).launch() |
|
|