File size: 3,585 Bytes
3c37eb3
c8763bd
ab5f5f1
341eaa4
bee5389
ad5bd56
d4660ee
ad5bd56
c8763bd
9dc4521
ab5f5f1
e747f4e
c382b2a
9e3eaf4
f3dc796
d574374
a830adb
df1a500
67b4a03
 
ab5f5f1
483e3a1
 
 
ab5f5f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
483e3a1
 
 
 
 
 
 
 
ab5f5f1
483e3a1
 
ab5f5f1
 
 
483e3a1
ab5f5f1
 
483e3a1
 
ab5f5f1
 
483e3a1
 
ab5f5f1
483e3a1
f3dc796
ab5f5f1
f3dc796
483e3a1
 
f3dc796
 
ab5f5f1
 
483e3a1
 
 
 
bee5389
ab5f5f1
2ff4a74
3c37eb3
9dc4521
 
bee5389
9dc4521
2ff4a74
00642fb
ad5bd56
9dc4521
bee5389
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
TITLE = """<h1 align="center" id="space-title">🤗 LLM-Perf Leaderboard 🏋️</h1>"""

INTRODUCTION = """
The 🤗 LLM-Perf Leaderboard 🏋️ aims to benchmark the performance (latency, throughput, memory & energy) of Large Language Models (LLMs) with different hardwares, backends and optimizations using [Optimum-Benchmark](https://github.com/huggingface/optimum-benchmark) and [Optimum](https://github.com/huggingface/optimum) flavors.

Anyone from the community can request a model or a hardware/backend/optimization configuration for automated benchmarking:
- Model evaluation requests should be made in the [🤗 Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) and will be added to the [🤗 LLM Performance Leaderboard 🏋️](https://huggingface.co/spaces/optimum/llm-perf-leaderboard) automatically.
- Hardware/Backend/Optimization performance requests should be made in the [community discussions](https://huggingface.co/spaces/optimum/llm-perf-leaderboard/discussions) to assess their relevance and feasibility.
"""

ABOUT = """<h3>About the 🤗 LLM-Perf Leaderboard 🏋️</h3>
<ul>
    <li>To avoid communication-dependent results, only one GPU is used.</li>
    <li>Score is the average evaluation score obtained from the <a href="https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard">🤗 Open LLM Leaderboard</a>.</li>
    <li>LLMs are running on a singleton batch with a prompt size of 256 and generating a 1000 tokens.</li>
    <li>Energy consumption is measured in kWh using CodeCarbon and taking into consideration the GPU, CPU, RAM and location of the machine.</li>
    <li>We measure three types of memory: Max Allocated Memory, Max Reserved Memory and Max Used Memory. The first two being reported by PyTorch and the last one being observed using PyNVML.</li>
</ul>
"""

EXAMPLE_CONFIG = """
Here's an example of the configuration file used to benchmark the models with Optimum-Benchmark:
```yaml
defaults:
  - backend: pytorch
  - _base_ # inheriting from base config
  - _self_ # for hydra 1.1 compatibility

experiment_name: pytorch+cuda+float16+bettertransformer
device: cuda

backend:
  no_weights: true
  torch_dtype: float16
  to_bettertransformer: true
```

Where the base config is:
```yaml
defaults:
  - benchmark: inference # default benchmark
  - experiment # inheriting from experiment config
  - _self_ # for hydra 1.1 compatibility
  - override hydra/job_logging: colorlog # colorful logging
  - override hydra/hydra_logging: colorlog # colorful logging

hydra:
  run:
    dir: ???
  job:
    chdir: true
    env_set:
      CUDA_VISIBLE_DEVICES: 0
      CUDA_DEVICE_ORDER: PCI_BUS_ID

model: ???
experiment_name: ???

backend:
  initial_isolation_check: true
  continous_isolation_check: true

benchmark:
  duration: 10
  memory: true
  energy: true

  new_tokens: 1000
  input_shapes:
    batch_size: 1
    sequence_length: 256

hub_kwargs:
  trust_remote_code: true
```
"""


CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results."
CITATION_BUTTON = r"""@misc{llm-perf-leaderboard,
  author = {Ilyas Moutawwakil, Régis Pierrard},
  title = {LLM-Perf Leaderboard},
  year = {2023},
  publisher = {Hugging Face},
  howpublished = "\url{https://huggingface.co/spaces/optimum/llm-perf-leaderboard}",
@software{optimum-benchmark,
  author = {Ilyas Moutawwakil, Régis Pierrard},
  publisher = {Hugging Face},
  title = {Optimum-Benchmark: A framework for benchmarking the performance of Transformers models with different hardwares, backends and optimizations.},
}
"""