import cv2 import numpy as np from skimage import transform as trans arcface_dst = np.array( [[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366], [41.5493, 92.3655], [70.7299, 92.2041]], dtype=np.float32) def estimate_norm(lmk, image_size=112, mode='arcface'): assert lmk.shape == (5, 2) assert image_size % 112 == 0 or image_size % 128 == 0 if image_size % 112 == 0: ratio = float(image_size) / 112.0 diff_x = 0 else: ratio = float(image_size) / 128.0 diff_x = 8.0 * ratio dst = arcface_dst * ratio dst[:, 0] += diff_x tform = trans.SimilarityTransform() tform.estimate(lmk, dst) M = tform.params[0:2, :] return M def norm_crop(img, landmark, image_size=112, mode='arcface'): M = estimate_norm(landmark, image_size, mode) warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0) return warped def norm_crop2(img, landmark, image_size=112, mode='arcface'): M = estimate_norm(landmark, image_size, mode) warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0) return warped, M def square_crop(im, S): if im.shape[0] > im.shape[1]: height = S width = int(float(im.shape[1]) / im.shape[0] * S) scale = float(S) / im.shape[0] else: width = S height = int(float(im.shape[0]) / im.shape[1] * S) scale = float(S) / im.shape[1] resized_im = cv2.resize(im, (width, height)) det_im = np.zeros((S, S, 3), dtype=np.uint8) det_im[:resized_im.shape[0], :resized_im.shape[1], :] = resized_im return det_im, scale def transform(data, center, output_size, scale, rotation): scale_ratio = scale rot = float(rotation) * np.pi / 180.0 # translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio) t1 = trans.SimilarityTransform(scale=scale_ratio) cx = center[0] * scale_ratio cy = center[1] * scale_ratio t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy)) t3 = trans.SimilarityTransform(rotation=rot) t4 = trans.SimilarityTransform(translation=(output_size / 2, output_size / 2)) t = t1 + t2 + t3 + t4 M = t.params[0:2] cropped = cv2.warpAffine(data, M, (output_size, output_size), borderValue=0.0) return cropped, M def trans_points2d(pts, M): new_pts = np.zeros(shape=pts.shape, dtype=np.float32) for i in range(pts.shape[0]): pt = pts[i] new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32) new_pt = np.dot(M, new_pt) # print('new_pt', new_pt.shape, new_pt) new_pts[i] = new_pt[0:2] return new_pts def trans_points3d(pts, M): scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1]) # print(scale) new_pts = np.zeros(shape=pts.shape, dtype=np.float32) for i in range(pts.shape[0]): pt = pts[i] new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32) new_pt = np.dot(M, new_pt) # print('new_pt', new_pt.shape, new_pt) new_pts[i][0:2] = new_pt[0:2] new_pts[i][2] = pts[i][2] * scale return new_pts def trans_points(pts, M): if pts.shape[1] == 2: return trans_points2d(pts, M) else: return trans_points3d(pts, M)