File size: 1,060 Bytes
e650550
 
 
 
 
 
 
 
 
f3b328f
e650550
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
682828e
 
3f76157
3067776
f3b328f
e650550
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# AUTOGENERATED! DO NOT EDIT! File to edit: ../Model into Production.ipynb.

# %% auto 0
__all__ = ['learn', 'categories', 'image', 'label', 'examples', 'intf', 'is_cat', 'classify_image']

# %% ../Model into Production.ipynb 1
from fastai.vision.all import *

# %% ../Model into Production.ipynb 2
import gradio as gr
from gradio import *
from gradio.components import Image, Label

# %% ../Model into Production.ipynb 3
def is_cat(x): return x[0].issupper()

# %% ../Model into Production.ipynb 5
learn = load_learner('model.pkl')

# %% ../Model into Production.ipynb 7
categories = ('Dog', 'Cat')

def classify_image(img):
    pred, idx, probs = learn.predict(img)
    return dict(zip(categories, map(float, probs)))

# %% ../Model into Production.ipynb 9
# Initialize the image input component with the specified shape
image = Image()

# Initialize the label output component without the 'type' argument
label = Label()

example = ['dog.jpeg']


intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=example)

intf.launch(share=True)