File size: 5,800 Bytes
e39659e
 
d74a6c7
 
 
 
 
e39659e
d74a6c7
 
e39659e
d74a6c7
 
 
e39659e
d74a6c7
 
 
e39659e
d74a6c7
 
 
 
 
 
 
 
e39659e
d74a6c7
 
e39659e
d74a6c7
 
 
 
 
 
 
 
e39659e
d74a6c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e39659e
d74a6c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e39659e
 
 
 
d74a6c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e39659e
 
d74a6c7
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import gradio as gr
from huggingface_hub import InferenceClient
import time
from typing import Optional, Generator
import logging
import os
from dotenv import load_dotenv

# 加载环境变量
load_dotenv()

# 设置日志
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# 初始化故事生成器的系统提示
STORY_SYSTEM_PROMPT = """你是一个专业的故事生成器。你需要根据用户提供的场景或角色描述,生成引人入胜的故事情节。
请确保故事具有连贯性和创意性。每次回应都应该是故事情节的自然延续。"""

STORY_STYLES = [
    "奇幻",
    "科幻",
    "悬疑",
    "冒险",
    "爱情",
    "恐怖"
]

MAX_RETRIES = 3
RETRY_DELAY = 2

def create_client() -> InferenceClient:
    hf_token = os.getenv('HF_TOKEN')
    if not hf_token:
        raise ValueError("HF_TOKEN 环境变量未设置")
    return InferenceClient(
        "HuggingFaceH4/zephyr-7b-beta",
        token=hf_token
    )

def generate_story(
    scene: str,
    style: str,
    history: Optional[list[dict]] = None,
    temperature: float = 0.7,
    max_tokens: int = 512,
    top_p: float = 0.95,
) -> Generator[str, None, None]:
    if history is None:
        history = []
        
    style_prompt = f"请以{style}风格续写以下故事:"
    
    messages = [
        {"role": "system", "content": STORY_SYSTEM_PROMPT},
        {"role": "user", "content": f"{style_prompt}\n{scene}"}
    ]
    
    for msg in history:
        messages.append(msg)
    
    response = ""
    retries = 0
    
    while retries < MAX_RETRIES:
        try:
            client = create_client()
            for message in client.chat_completion(
                messages,
                max_tokens=max_tokens,
                stream=True,
                temperature=temperature,
                top_p=top_p,
            ):
                if hasattr(message.choices[0].delta, 'content'):
                    token = message.choices[0].delta.content
                    if token is not None:
                        response += token
                        yield response
            break
        except Exception as e:
            retries += 1
            logger.error(f"生成故事时发生错误 (尝试 {retries}/{MAX_RETRIES}): {str(e)}")
            if retries < MAX_RETRIES:
                time.sleep(RETRY_DELAY)
            else:
                yield f"抱歉,生成故事时遇到了问题:{str(e)}\n请稍后重试。"

def create_demo():
    with gr.Blocks() as demo:
        gr.Markdown("# 互动式故事生成器")
        gr.Markdown("请输入一个场景或角色描述,AI将为您生成一个有趣的故事。您可以继续输入来推进故事情节的发展。")
        
        style_select = gr.Dropdown(
            choices=STORY_STYLES,
            value="奇幻",
            label="选择故事风格"
        )
        scene_input = gr.Textbox(
            lines=3,
            placeholder="请输入一个场景或角色描述...",
            label="场景描述"
        )
        
        temperature = gr.Slider(
            minimum=0.1,
            maximum=2.0,
            value=0.7,
            step=0.1,
            label="创意度(Temperature)"
        )
        max_tokens = gr.Slider(
            minimum=64,
            maximum=1024,
            value=512,
            step=64,
            label="最大生成长度"
        )
        top_p = gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="采样范围(Top-p)"
        )
        
        chatbot = gr.Chatbot(
            label="故事对话",
            type="messages"
        )
        status_msg = gr.Markdown("")
        
        submit_btn = gr.Button("生成故事")
        clear_btn = gr.Button("清除对话")
        
        def user_input(user_message, history):
            if history is None:
                history = []
            history.append({"role": "user", "content": user_message})
            return "", history
        
        def bot_response(history, style, temperature, max_tokens, top_p):
            try:
                current_message = {"role": "assistant", "content": ""}
                history.append(current_message)
                
                for text in generate_story(
                    history[-2]["content"],
                    style,
                    history[:-2],
                    temperature,
                    max_tokens,
                    top_p
                ):
                    current_message["content"] = text
                    yield history
            except Exception as e:
                logger.error(f"处理响应时发生错误: {str(e)}")
                current_message["content"] = f"抱歉,生成故事时遇到了问题。请稍后重试。"
                yield history
        
        scene_input.submit(
            user_input,
            [scene_input, chatbot],
            [scene_input, chatbot]
        ).then(
            bot_response,
            [chatbot, style_select, temperature, max_tokens, top_p],
            chatbot
        )
        
        submit_btn.click(
            user_input,
            [scene_input, chatbot],
            [scene_input, chatbot]
        ).then(
            bot_response,
            [chatbot, style_select, temperature, max_tokens, top_p],
            chatbot
        )
        
        def clear_chat():
            return [], ""
        
        clear_btn.click(
            clear_chat,
            None,
            [chatbot, status_msg],
        )
        
        return demo

if __name__ == "__main__":
    demo = create_demo()
    demo.queue().launch(
        server_port=7861,
        share=False
    )