Spaces:
Sleeping
Sleeping
File size: 3,534 Bytes
f1691d8 026783f 0dd7ae7 162dd8b f1691d8 162dd8b f1691d8 0dd7ae7 f1691d8 8639815 f1691d8 162dd8b 026783f 162dd8b 026783f f1691d8 b9c9dac f1691d8 b9c9dac f1691d8 b9c9dac f1691d8 162dd8b 8639815 162dd8b b9c9dac 162dd8b f1691d8 162dd8b f1691d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
import PyPDF2
import gradio as gr
from langchain.prompts import PromptTemplate
from langchain.chains.summarize import load_summarize_chain
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import DirectoryLoader
from langchain_core.documents import Document
from pathlib import Path
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
llm = HuggingFaceEndpoint(
repo_id="mistralai/Mistral-7B-Instruct-v0.3",
task="text-generation",
max_new_tokens=4096,
do_sample=False,
)
llm_engine_hf = ChatHuggingFace(llm=llm)
def read_pdf(file_path):
pdf_reader = PyPDF2.PdfReader(file_path)
text = ""
for page in range(len(pdf_reader.pages)):
text += pdf_reader.pages[page].extract_text()
return text
def summarize(file, n_words):
# Read the content of the uploaded file
file_path = file.name
if file_path.endswith('.pdf'):
file_content = read_pdf(file_path)
else:
with open(file_path, 'r', encoding='utf-8') as f:
file_content = f.read()
document = Document(file_content)
# Generate the summary
text = document.page_content
text_splitter = RecursiveCharacterTextSplitter(chunk_size=3000, chunk_overlap=200)
chunks = text_splitter.create_documents([text])
n_words = n_words
template = '''
Your task is to summarize a long text into a concise summary of a specific number of words.
The summary you generate must be very detailed.
Before writing your final summary, first break down the key points of the text in a <scratchpad>. Identify the most important information that should be included in a summary of the specified length.
Then, write a summary that captures the core ideas and key details of the text. Start with an introductory sentence and then concisely summarize the main points in a logical order. Make sure to stay within the {{N_WORDS}} word limit.
Here is the long text to summarize:
Text:
{TEXT}
'''
prompt = PromptTemplate(
template=template,
input_variables=['TEXT']
)
formatted_prompt = prompt.format(TEXT=text, N_WORDS=n_words)
output_summary = llm_engine_hf.invoke(formatted_prompt)
return output_summary.content
def download_summary(output_text):
if output_text:
file_path = Path('summary.txt')
with open(file_path, 'w', encoding='utf-8') as f:
f.write(output_text)
return file_path
else:
return None
def create_download_file(summary_text):
file_path = download_summary(summary_text)
return str(file_path) if file_path else None
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## Document Summarizer")
with gr.Row():
with gr.Column():
file = gr.File(label="Submit a file")
with gr.Column():
output_text = gr.Textbox(label="Summary", lines=20)
submit_button = gr.Button("Summarize")
submit_button.click(summarize, inputs=[file], outputs=output_text)
def generate_file():
summary_text = output_text
file_path = download_summary(summary_text)
return file_path
download_button = gr.Button("Download Summary")
download_button.click(
fn=create_download_file,
inputs=[output_text],
outputs=gr.File()
)
# Run the Gradio app
demo.launch(share=True) |