File size: 5,646 Bytes
443d045 77a6843 443d045 77a6843 443d045 fe4350f 443d045 77a6843 443d045 0ca1021 443d045 77a6843 443d045 a31b1ce 443d045 fc1cf7c 443d045 77a6843 443d045 f88ad22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import sys
from typing import Dict
sys.path.insert(0, 'gradio-modified')
import gradio as gr
import numpy as np
from PIL import Image
import torch
if torch.cuda.is_available():
t = torch.cuda.get_device_properties(0).total_memory
r = torch.cuda.memory_reserved(0)
a = torch.cuda.memory_allocated(0)
f = t-a # free inside reserved
if f < 2**32:
device = 'cpu'
else:
device = 'cuda'
else:
device = 'cpu'
torch._C._jit_set_bailout_depth(0)
print('Use device:', device)
net = torch.jit.load(f'weights/pkp-v1.{device}.jit.pt')
model_net = torch.load(f'weights/colorizer.pt')
def resize_original(img: Image.Image):
if img is None:
return img
if isinstance(img, dict):
img = img["image"]
guide_img = img.convert('L')
w, h = guide_img.size
scale = 256 / min(guide_img.size)
guide_img = guide_img.resize([int(round(s*scale)) for s in guide_img.size], Image.Resampling.LANCZOS)
guide = np.asarray(guide_img)
h, w = guide.shape[-2:]
rows = int(np.ceil(h/64))*64
cols = int(np.ceil(w/64))*64
ph_1 = (rows-h) // 2
ph_2 = rows-h - (rows-h) // 2
pw_1 = (cols-w) // 2
pw_2 = cols-w - (cols-w) // 2
guide = np.pad(guide, ((ph_1, ph_2), (pw_1, pw_2)), mode='constant', constant_values=255)
guide_img = Image.fromarray(guide)
return gr.Image.update(value=guide_img.convert('RGBA')), guide_img.convert('RGBA')
def colorize(img: Dict[str Image.Image], guide_img: Image.Image, seed: int, hint_mode: str):
if not isinstance(img, dict):
return gr.update(visible=True)
if hint_mode == "Roughly Hint":
hint_mode_int = 0
elif hint_mode == "Precisely Hint":
hint_mode_int = 0
guide_img = guide_img.convert('L')
hint_img = img["mask"].convert('RGBA') # I modified gradio to enable it upload colorful mask
guide = torch.from_numpy(np.asarray(guide_img))[None,None].float().to(device) / 255.0 * 2 - 1
hint = torch.from_numpy(np.asarray(hint_img)).permute(2,0,1)[None].float().to(device) / 255.0 * 2 - 1
hint_alpha = (hint[:,-1:] > 0.99).float()
hint = hint[:,:3] * hint_alpha - 2 * (1 - hint_alpha)
np.random.seed(int(seed))
b, c, h, w = hint.shape
h //= 8
w //= 8
noises = [torch.from_numpy(np.random.randn(b, c, h, w)).float().to(device) for _ in range(16+1)]
with torch.inference_mode():
sample = net(noises, guide, hint, hint_mode_int)
out = sample[0].cpu().numpy().transpose([1,2,0])
out = np.uint8(((out + 1) / 2 * 255).clip(0,255))
return Image.fromarray(out).convert('RGB')
def colorize2(img: Image.Image, model_option: str):
if not isinstance(img, dict):
return gr.update(visible=True)
if hint_mode == "Model 1":
model_int = 0
elif hint_mode == "Model 2":
model_int = 0
with torch.inference_mode():
out2 = model(input)
out = sample[0].cpu().numpy().transpose([1,2,0])
out = np.uint8(((out + 1) / 2 * 255).clip(0,255))
return Image.fromarray(out).convert('RGB')
with gr.Blocks() as demo:
gr.Markdown('''<center><h1>Image Colorization With Hint</h1></center>
<h2>Colorize your images/sketches with hint points.</h2>
<br />
''')
with gr.Row():
with gr.Column():
inp = gr.Image(
source="upload",
tool="sketch", # tool="color-sketch", # color-sketch upload image mixed with the original
type="pil",
label="Sketch",
interactive=True,
elem_id="sketch-canvas"
)
inp_store = gr.Image(
type="pil",
interactive=False
)
inp_store.visible = False
with gr.Column():
seed = gr.Slider(1, 2**32, step=1, label="Seed", interactive=True, randomize=True)
hint_mode = gr.Radio(["Roughly Hint", "Precisely Hint"], value="Roughly Hint", label="Hint Mode")
btn = gr.Button("Run")
with gr.Column():
output = gr.Image(type="pil", label="Output", interactive=False)
with gr.Row():
with gr.Column():
inp2 = gr.Image(
source="upload",
type="pil",
label="Sketch",
interactive=True
)
inp_store2 = gr.Image(
type="pil",
interactive=False
)
inp_store2.visible = False
with gr.Column():
# seed = gr.Slider(1, 2**32, step=1, label="Seed", interactive=True, randomize=True)
model_option = gr.Radio(["Model 1", "Model 2"], value="Model 1", label="Model 2")
btn2 = gr.Button("Run Colorization")
with gr.Column():
output2 = gr.Image(type="pil", label="Output2", interactive=False)
gr.Markdown('''
Upon uploading an image, kindly give color hints at specific points, and then run the model. Average inference time is about 52 seconds.<br />
''')
gr.Markdown('''Authors: <a href=\"https://www.linkedin.com/in/chakshu-dhannawat/">Chakshu Dhannawat</a>, <a href=\"https://www.linkedin.com/in/navlika-singh-963120204/">Navlika Singh</a>,<a href=\"https://www.linkedin.com/in/akshat-jain-103550201/"> Akshat Jain</a>''')
inp.upload(
resize_original,
inp,
[inp, inp_store],
)
btn.click(
colorize,
[inp, inp_store, seed, hint_mode],
output
)
btn2.click(
colorize2,
[inp, model_option],
output2
)
if __name__ == "__main__":
demo.launch()
|