Spaces:
Running
Running
File size: 4,740 Bytes
5a3dfd3 b2fc897 2517e60 5a3dfd3 e2aae4e 5a3dfd3 6dcded2 b483613 5a3dfd3 69f51b6 b134327 0fdeab1 69f51b6 b134327 69f51b6 86845a2 e3698f4 69f51b6 86845a2 69f51b6 0fdeab1 69f51b6 86845a2 69f51b6 1943daa d37873a 6dcded2 be469ef 03898c7 5ddbbe2 03898c7 6dcded2 03898c7 6dcded2 69f51b6 c80a17d 9ba6616 93e825f c80a17d 7dd5ac5 8ce9b88 da9ce74 8465efd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import os
os.system("wget https://huggingface.co/Carve/LaMa-ONNX/resolve/main/lama_fp32.onnx")
os.system("pip install onnxruntime imageio")
import cv2
import paddlehub as hub
import gradio as gr
import torch
from PIL import Image, ImageOps
import numpy as np
import imageio
os.mkdir("data")
os.mkdir("dataout")
model = hub.Module(name='U2Net')
import cv2
import numpy as np
import onnxruntime
import torch
from PIL import Image
sess_options = onnxruntime.SessionOptions()
rmodel = onnxruntime.InferenceSession('lama_fp32.onnx', sess_options=sess_options)
# Source https://github.com/advimman/lama
def get_image(image):
if isinstance(image, Image.Image):
img = np.array(image)
elif isinstance(image, np.ndarray):
img = image.copy()
else:
raise Exception("Input image should be either PIL Image or numpy array!")
if img.ndim == 3:
img = np.transpose(img, (2, 0, 1)) # chw
elif img.ndim == 2:
img = img[np.newaxis, ...]
assert img.ndim == 3
img = img.astype(np.float32) / 255
return img
def ceil_modulo(x, mod):
if x % mod == 0:
return x
return (x // mod + 1) * mod
def scale_image(img, factor, interpolation=cv2.INTER_AREA):
if img.shape[0] == 1:
img = img[0]
else:
img = np.transpose(img, (1, 2, 0))
img = cv2.resize(img, dsize=None, fx=factor, fy=factor, interpolation=interpolation)
if img.ndim == 2:
img = img[None, ...]
else:
img = np.transpose(img, (2, 0, 1))
return img
def pad_img_to_modulo(img, mod):
channels, height, width = img.shape
out_height = ceil_modulo(height, mod)
out_width = ceil_modulo(width, mod)
return np.pad(
img,
((0, 0), (0, out_height - height), (0, out_width - width)),
mode="symmetric",
)
def prepare_img_and_mask(image, mask, device, pad_out_to_modulo=8, scale_factor=None):
out_image = get_image(image)
out_mask = get_image(mask)
if scale_factor is not None:
out_image = scale_image(out_image, scale_factor)
out_mask = scale_image(out_mask, scale_factor, interpolation=cv2.INTER_NEAREST)
if pad_out_to_modulo is not None and pad_out_to_modulo > 1:
out_image = pad_img_to_modulo(out_image, pad_out_to_modulo)
out_mask = pad_img_to_modulo(out_mask, pad_out_to_modulo)
out_image = torch.from_numpy(out_image).unsqueeze(0).to(device)
out_mask = torch.from_numpy(out_mask).unsqueeze(0).to(device)
out_mask = (out_mask > 0) * 1
return out_image, out_mask
def predict(jpg, msk):
imagex = Image.open(jpg)
mask = Image.open(msk).convert("L")
image, mask = prepare_img_and_mask(imagex.resize((512, 512)), mask.resize((512, 512)), 'cpu')
# Run the model
outputs = rmodel.run(None, {'image': image.numpy().astype(np.float32), 'mask': mask.numpy().astype(np.float32)})
output = outputs[0][0]
# Postprocess the outputs
output = output.transpose(1, 2, 0)
output = output.astype(np.uint8)
output = Image.fromarray(output)
output = output.resize(imagex.size)
output.save("/home/user/app/dataout/data_mask.png")
def infer(img,option):
print(type(img))
print(type(img["image"]))
print(type(img["mask"]))
imageio.imwrite("./data/data.png", img["image"])
if option == "automatic (U2net)":
result = model.Segmentation(
images=[cv2.cvtColor(img["image"], cv2.COLOR_RGB2BGR)],
paths=None,
batch_size=1,
input_size=320,
output_dir='output',
visualization=True)
im = Image.fromarray(result[0]['mask'])
im.save("./data/data_mask.png")
else:
imageio.imwrite("./data/data_mask.png", img["mask"])
predict("./data/data.png", "./data/data_mask.png")
return "./dataout/data_mask.png","./data/data_mask.png"
inputs = [gr.Image(label="Input",type="numpy"),gr.inputs.Radio(choices=["automatic (U2net)","manual"], type="value", default="manual", label="Masking option")]
outputs = [gr.outputs.Image(type="file",label="output"),gr.outputs.Image(type="file",label="Mask")]
title = "LaMa Image Inpainting (using ONNX model from Carve))"
description = "Gradio demo for LaMa: Resolution-robust Large Mask Inpainting with Fourier Convolutions. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. Masks are generated by U^2net"
article = "<p style='text-align: center'><a href='https://huggingface.co/Carve/LaMa-ONNX' target='_blank'>ONNX model ported by Carve.Photos</a> | <a href='https://github.com/saic-mdal/lama' target='_blank'>LaMa github repo</a></p>"
gr.Interface(infer, inputs, outputs, title=title, description=description, article=article).launch() |