File size: 3,531 Bytes
5a3dfd3
6dcded2
24e5a6a
 
69f51b6
24e5a6a
69f51b6
 
24e5a6a
 
 
 
 
69f51b6
24e5a6a
 
 
69f51b6
24e5a6a
 
69f51b6
24e5a6a
69f51b6
24e5a6a
 
 
 
 
 
 
69f51b6
24e5a6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69f51b6
 
24e5a6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import os
import imageio
from PIL import Image
import gradio as gr
import cv2
import paddlehub as hub
import onnxruntime

# Download and setup models
os.system("wget https://huggingface.co/Carve/LaMa-ONNX/resolve/main/lama_fp32.onnx")
os.system("pip install onnxruntime imageio")
os.makedirs("data", exist_ok=True)
os.makedirs("dataout", exist_ok=True)

# Load LaMa ONNX model
sess_options = onnxruntime.SessionOptions()
lama_model = onnxruntime.InferenceSession('lama_fp32.onnx', sess_options=sess_options)

# Load U^2-Net model for automatic masking
u2net_model = hub.Module(name='U2Net') 

# --- Helper Functions ---

def prepare_image(image, target_size=(512, 512)):
    """Resizes and preprocesses image for LaMa model."""
    if isinstance(image, Image.Image):
        image = image.resize(target_size)
        image = np.array(image)
    elif isinstance(image, np.ndarray):
        image = cv2.resize(image, target_size)
    else:
        raise ValueError("Input image should be either PIL Image or numpy array!")

    # Normalize to [0, 1] and convert to CHW format
    image = image.astype(np.float32) / 255.0
    if image.ndim == 3:
        image = np.transpose(image, (2, 0, 1))
    elif image.ndim == 2:
        image = image[np.newaxis, ...]
    return image[np.newaxis, ...] # Add batch dimension

def generate_mask(image, method="automatic"):
    """Generates mask from image using U^2-Net or user input."""
    if method == "automatic":
        input_size = 320  # Adjust based on U^2-Net requirements
        result = u2net_model.Segmentation(
            images=[cv2.cvtColor(image, cv2.COLOR_RGB2BGR)],
            paths=None,
            batch_size=1,
            input_size=input_size,
            output_dir='output',
            visualization=False
        )
        mask = Image.fromarray(result[0]['mask'])
        mask = mask.resize((512, 512))  # Resize to match LaMa input
        mask.save("./data/data_mask.png")
    else:  # "manual"
        mask = imageio.imread("./data/data_mask.png") 
        mask = Image.fromarray(mask).convert("L")  # Ensure grayscale
        mask = mask.resize((512, 512))
    return prepare_image(mask, (512, 512))

def inpaint_image(image, mask):
    """Performs inpainting using the LaMa model."""
    outputs = lama_model.run(None, {'image': image, 'mask': mask})
    output = outputs[0][0]
    output = output.transpose(1, 2, 0)
    output = (output * 255).astype(np.uint8)
    return Image.fromarray(output) 

# --- Gradio Interface ---

def process_image(input_image, mask_option):
    """Main function for Gradio interface."""
    imageio.imwrite("./data/data.png", input_image)

    image = prepare_image(input_image)
    mask = generate_mask(input_image, method=mask_option)
    
    inpainted_image = inpaint_image(image, mask)
    inpainted_image = inpainted_image.resize(Image.open("./data/data.png").size)
    inpainted_image.save("./dataout/data_mask.png")
    return "./dataout/data_mask.png", "./data/data_mask.png"

iface = gr.Interface(
    fn=process_image,
    inputs=[
        gr.Image(label="Input Image", type="numpy"),
        gr.Radio(choices=["automatic", "manual"], 
                 type="value", default="manual", label="Masking Option")
    ],
    outputs=[
        gr.Image(type="file", label="Inpainted Image"),
        gr.Image(type="file", label="Generated Mask")
    ],
    title="LaMa Image Inpainting",
    description="Image inpainting with LaMa and U^2-Net. Upload your image and choose automatic or manual masking.",
)

iface.launch()