File size: 4,162 Bytes
c9e8e4a
3bce3fb
a16fa71
41d27ac
 
 
 
c9e8e4a
fa5e188
7c0d726
 
 
 
fa5e188
c9e8e4a
 
f4313df
c9e8e4a
 
 
7c0d726
41d27ac
7c0d726
 
 
 
 
 
 
f7b6a4b
7c0d726
 
5740d40
c5fafcd
7982bc6
a16fa71
7c0d726
 
 
a16fa71
7982bc6
7c0d726
 
 
 
 
 
 
5740d40
c9e8e4a
7cf1a13
33c3beb
e22d1d3
f4313df
7982bc6
 
7c0d726
9be3f4c
f25abd8
7c0d726
 
 
f4313df
3bce3fb
c9e8e4a
 
 
5740d40
7c0d726
 
f25abd8
c3fb384
f25abd8
a19ffbb
f25abd8
5740d40
7c0d726
90b0361
fa5e188
18d2e11
22fef42
 
 
 
 
7c0d726
7cf1a13
 
 
a16fa71
 
 
7c0d726
 
 
7cf1a13
 
 
7c0d726
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cf1a13
 
41d27ac
7c0d726
 
 
 
 
 
 
 
f7b6a4b
 
05d8027
7c0d726
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import json
import pandas as pd
import requests
from multiprocessing import Pool
from functools import partial
import streamlit as st


GITHUB_CODE = "https://huggingface.co/datasets/lvwerra/github-code"
INCODER_IMG = (
    "https://huggingface.co/datasets/loubnabnl/repo-images/raw/main/incoder.png"
)


@st.cache()
def load_examples():
    with open("utils/examples.json", "r") as f:
        examples = json.load(f)
    return examples


def generate_code(model_name, gen_prompt, max_new_tokens, temperature, seed):
    url = (
        f"https://hf.space/embed/loubnabnl/{model_name.lower()}-subspace/+/api/predict/"
    )
    r = requests.post(
        url=url, json={"data": [gen_prompt, max_new_tokens, temperature, seed]}
    )
    generated_text = r.json()["data"][0]
    return generated_text


st.set_page_config(page_icon=":laptop:", layout="wide")

st.sidebar.header("Models")
models = ["CodeParrot", "InCoder"]
selected_models = st.sidebar.multiselect(
    "Select code generation models to compare", models, default=["CodeParrot"]
)

st.sidebar.header("Tasks")
tasks = [
    " ",
    "Pretraining datasets",
    "Model architecture",
    "Model evaluation",
    "Code generation",
]
selected_task = st.sidebar.selectbox("Select a task", tasks)


if selected_task == " ":
    st.title("Code Generation Models")
    with open("utils/intro.txt", "r") as f:
        intro = f.read()
    st.markdown(intro)

elif selected_task == "Pretraining datasets":
    st.title("Pretraining datasets 📚")
    st.markdown(
        f"Preview of some code files from Github repositories in [Github-code dataset]({GITHUB_CODE}):"
    )
    df = pd.read_csv("utils/data_preview.csv")
    st.dataframe(df)
    for model in selected_models:
        with open(f"datasets/{model.lower()}.txt", "r") as f:
            text = f.read()
        st.markdown(f"### {model}")
        st.markdown(text)

elif selected_task == "Model architecture":
    st.title("Model architecture")
    for model in selected_models:
        with open(f"architectures/{model.lower()}.txt", "r") as f:
            text = f.read()
        st.markdown(f"## {model}")
        st.markdown(text)
        if model == "InCoder":
            st.image(INCODER_IMG, caption="Figure 1: InCoder training", width=700)

elif selected_task == "Model evaluation":
    st.title("Code models evaluation 📊")
    with open("evaluation/intro.txt", "r") as f:
        intro = f.read()
    st.markdown(intro)

elif selected_task == "Code generation":
    st.title("Code generation 💻")
    st.sidebar.header("Examples")
    examples = load_examples()
    example_names = [example["name"] for example in examples]
    name2id = dict([(name, i) for i, name in enumerate(example_names)])
    selected_example = st.sidebar.selectbox(
        "Select one of the following examples or implement yours", example_names
    )
    example_text = examples[name2id[selected_example]]["value"]
    default_length = examples[name2id[selected_example]]["length"]
    st.sidebar.header("Generation settings")
    temperature = st.sidebar.slider(
        "Temperature:", value=0.2, min_value=0.0, step=0.1, max_value=2.0
    )
    max_new_tokens = st.sidebar.slider(
        "Number of tokens to generate:",
        value=default_length,
        min_value=8,
        step=8,
        max_value=256,
    )
    seed = st.sidebar.slider(
        "Random seed:", value=42, min_value=0, step=1, max_value=1000
    )
    gen_prompt = st.text_area(
        "Generate code with prompt:",
        value=example_text,
        height=220,
    ).strip()
    if st.button("Generate code!"):
        with st.spinner("Generating code..."):
            # Create a multiprocessing Pool
            pool = Pool()
            generate_parallel = partial(
                generate_code,
                gen_prompt=gen_prompt,
                max_new_tokens=max_new_tokens,
                temperature=temperature,
                seed=seed,
            )
            output = pool.map(generate_parallel, selected_models)
            for i in range(len(output)):
                st.markdown(f"**{selected_models[i]}**")
                st.code(output[i])