NCTC_OSINT / app.py
Canstralian's picture
Update app.py
4315682 verified
import yaml
import streamlit as st
import requests
from bs4 import BeautifulSoup
import pandas as pd
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer, Trainer, TrainingArguments
from datasets import load_dataset, Dataset
from components.sidebar import sidebar
from components.chat_box import chat_box
from components.chat_loop import chat_loop
from components.init_state import init_state
from components.prompt_engineering_dashboard import prompt_engineering_dashboard
# Load config.yaml
with open("config.yaml", "r") as file:
config = yaml.safe_load(file)
# Streamlit page configuration
st.set_page_config(
page_title="( -_•)▄︻テ═一💥 (´༎ຶٹ༎ຶ)NCTC OSINT AGENT BY TRHACKNON ╭∩╮( •̀_•́ )╭∩╮",
page_icon="𓃮",
)
# Initialize session state
init_state(st.session_state, config)
# Custom HTML for title styling
html_title = '''
<style>
.stTitle {
color: #00008B; /* Deep blue color */
font-size: 36px; /* Adjust font size as desired */
font-weight: bold; /* Add boldness (optional) */
/* Add other font styling here (optional) */
}
</style>
<h1 class="stTitle">( -_•)▄︻テ═一💥(´༎ຶٹ༎ຶ)NCTC OSINT AGENT💥╾━╤デ╦︻(•̀⤙•́)</h1>
'''
# Display HTML title
st.write(html_title, unsafe_allow_html=True)
# OSINT functions
def get_github_stars_forks(owner, repo):
url = f"https://api.github.com/repos/{owner}/{repo}"
response = requests.get(url)
data = response.json()
return data['stargazers_count'], data['forks_count']
def get_github_issues(owner, repo):
url = f"https://api.github.com/repos/{owner}/{repo}/issues"
response = requests.get(url)
issues = response.json()
return len(issues)
def get_github_pull_requests(owner, repo):
url = f"https://api.github.com/repos/{owner}/{repo}/pulls"
response = requests.get(url)
pulls = response.json()
return len(pulls)
def get_github_license(owner, repo):
url = f"https://api.github.com/repos/{owner}/{repo}/license"
response = requests.get(url)
data = response.json()
return data['license']['name']
def get_last_commit(owner, repo):
url = f"https://api.github.com/repos/{owner}/{repo}/commits"
response = requests.get(url)
commits = response.json()
return commits[0]['commit']['committer']['date']
def get_github_workflow_status(owner, repo):
url = f"https://api.github.com/repos/{owner}/{repo}/actions/runs"
response = requests.get(url)
runs = response.json()
return runs['workflow_runs'][0]['status'] if runs['workflow_runs'] else "No workflows found"
# Function to fetch page title from a URL
def fetch_page_title(url):
try:
response = requests.get(url)
st.write(f"Fetching URL: {url} - Status Code: {response.status_code}")
if response.status_code == 200:
soup = BeautifulSoup(response.text, 'html.parser')
title = soup.title.string if soup.title else 'No title found'
return title
else:
return f"Error: Received status code {response.status_code}"
except Exception as e:
return f"An error occurred: {e}"
# Main Streamlit app
def main():
# Display Prompt Engineering Dashboard (testing phase)
prompt_engineering_dashboard(st.session_state, config)
# Display sidebar and chat box
sidebar(st.session_state, config)
chat_box(st.session_state, config)
chat_loop(st.session_state, config)
# GitHub OSINT Analysis
st.write("### GitHub Repository OSINT Analysis")
st.write("Enter the GitHub repository owner and name:")
owner = st.text_input("Repository Owner")
repo = st.text_input("Repository Name")
if owner and repo:
stars, forks = get_github_stars_forks(owner, repo)
open_issues = get_github_issues(owner, repo)
open_pulls = get_github_pull_requests(owner, repo)
license_type = get_github_license(owner, repo)
last_commit = get_last_commit(owner, repo)
workflow_status = get_github_workflow_status(owner, repo)
st.write(f"Stars: {stars}, Forks: {forks}")
st.write(f"Open Issues: {open_issues}, Open Pull Requests: {open_pulls}")
st.write(f"License: {license_type}")
st.write(f"Last Commit: {last_commit}")
st.write(f"Workflow Status: {workflow_status}")
# URL Title Fetcher
st.write("### URL Title Fetcher")
url = st.text_input("Enter a URL to fetch its title:")
if url:
title = fetch_page_title(url)
st.write(f"Title: {title}")
# Dataset Upload & Model Fine-Tuning Section
st.write("### Dataset Upload & Model Fine-Tuning")
dataset_file = st.file_uploader("Upload a CSV file for fine-tuning", type=["csv"])
if dataset_file:
df = pd.read_csv(dataset_file)
st.dataframe(df.head())
st.write("Select a model for fine-tuning:")
model_name = st.selectbox("Model", ["bert-base-uncased", "distilbert-base-uncased"])
if st.button("Fine-tune Model"):
if dataset_file:
dataset = Dataset.from_pandas(df)
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
def tokenize_function(examples):
return tokenizer(examples['text'], padding="max_length", truncation=True)
tokenized_datasets = dataset.map(tokenize_function, batched=True)
training_args = TrainingArguments(output_dir="./results", num_train_epochs=1, per_device_train_batch_size=8)
trainer = Trainer(model=model, args=training_args, train_dataset=tokenized_datasets)
trainer.train()
st.write("Model fine-tuned successfully!")
# Load and display OSINT dataset
st.write("### OSINT Dataset")
dataset = load_dataset("originalbox/osint") # Replace with the correct dataset name
# Convert to pandas DataFrame for display
df = dataset['train'].to_pandas() # Make sure to use the appropriate split ('train', 'test', etc.)
st.write(df.head())
if __name__ == "__main__":
main()