|
import os |
|
import gradio as gr |
|
from huggingface_hub import HfApi, SpaceHardware |
|
|
|
|
|
HF_TOKEN = os.getenv("HF_TOKEN") |
|
TRAINING_SPACE_ID = "your_space_id_here" |
|
|
|
|
|
api = HfApi(token=HF_TOKEN) |
|
|
|
|
|
def get_task(): |
|
|
|
return None |
|
|
|
|
|
def add_task(task): |
|
|
|
return f"Task '{task}' added!" |
|
|
|
|
|
def mark_as_done(task): |
|
|
|
return f"Task '{task}' completed!" |
|
|
|
|
|
def train_and_upload(task): |
|
|
|
return f"Training model with task: {task}" |
|
|
|
|
|
def gradio_fn(task_input, history): |
|
task = get_task() |
|
|
|
if task is None: |
|
|
|
add_task_response = add_task(task_input) |
|
api.request_space_hardware(repo_id=TRAINING_SPACE_ID, hardware=SpaceHardware.T4_MEDIUM) |
|
|
|
|
|
history.append(("Bot", add_task_response)) |
|
return "", history |
|
else: |
|
|
|
runtime = api.get_space_runtime(repo_id=TRAINING_SPACE_ID) |
|
if runtime.hardware == SpaceHardware.T4_MEDIUM: |
|
|
|
train_and_upload_response = train_and_upload(task) |
|
mark_as_done_response = mark_as_done(task) |
|
|
|
|
|
history.append(("Bot", train_and_upload_response)) |
|
history.append(("Bot", mark_as_done_response)) |
|
|
|
|
|
api.request_space_hardware(repo_id=TRAINING_SPACE_ID, hardware=SpaceHardware.CPU_BASIC) |
|
else: |
|
|
|
api.request_space_hardware(repo_id=TRAINING_SPACE_ID, hardware=SpaceHardware.T4_MEDIUM) |
|
history.append(("Bot", "Requesting GPU hardware...")) |
|
|
|
return "", history |
|
|
|
|
|
chat_interface = gr.Interface( |
|
fn=gradio_fn, |
|
inputs=[gr.Textbox(label="Enter task name", placeholder="Type your task here...", lines=1)], |
|
outputs=[gr.Chatbot()], |
|
live=True, |
|
title="Task Manager Bot", |
|
description="Interact with the bot to manage tasks and trigger model training." |
|
) |
|
|
|
|
|
chat_interface.launch() |
|
|