File size: 3,096 Bytes
f190f7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import argparse
import gradio as gr
from openai import OpenAI

# Argument parser setup
parser = argparse.ArgumentParser(
    description='Chatbot Interface with Customizable Parameters')
parser.add_argument('--model-url',
                    type=str,
                    default='http://134.28.190.100:8000/v1',
                    help='Model URL')
parser.add_argument('-m',
                    '--model',
                    type=str,
                    required=True,
                    default='TheBloke/Mistral-7B-Instruct-v0.2-AWQ',
                    help='Model name for the chatbot')
parser.add_argument('--temp',
                    type=float,
                    default=0.8,
                    help='Temperature for text generation')
parser.add_argument('--stop-token-ids',
                    type=str,
                    default='',
                    help='Comma-separated stop token IDs')
parser.add_argument("--host", type=str, default=None)
parser.add_argument("--port", type=int, default=8001)

# Parse the arguments
args = parser.parse_args()

# Set OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = args.model_url

# Create an OpenAI client to interact with the API server
client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)

# def add_document():

def predict(message, history):
    # Convert chat history to OpenAI format
    history_openai_format = []#[{
        #"role": "system",
        #"content": "You are a great ai assistant."
    #}]
    for human, assistant in history:
        history_openai_format.append({"role": "user", "content": human})
        history_openai_format.append({
            "role": "assistant",
            "content": assistant
        })
    history_openai_format.append({"role": "user", "content": message})

    # Create a chat completion request and send it to the API server
    stream = client.chat.completions.create(
        model=args.model,  # Model name to use
        messages=history_openai_format,  # Chat history
        temperature=args.temp,  # Temperature for text generation
        stream=True,  # Stream response
        extra_body={
            'repetition_penalty':
            1,
            'stop_token_ids': [
                int(id.strip()) for id in args.stop_token_ids.split(',')
                if id.strip()
            ] if args.stop_token_ids else []
        })

    # Read and return generated text from response stream
    partial_message = ""
    for chunk in stream:
        partial_message += (chunk.choices[0].delta.content or "")
        yield partial_message

with gr.Blocks(title="MethodAI 0.15", theme="Soft") as demo:
    with gr.Row():
        with gr.Column(scale=1):
            gr.UploadButton("Click to upload PDFs",file_types=[".pdf"])
        with gr.Column(scale=4):
# Create and launch a chat interface with Gradio
            gr.ChatInterface(predict).queue()
# with demo:
#     btn.upload(render_file, inputs=[btn], outputs=[show_img])
demo.launch(server_name=args.host, server_port=args.port, share=True)