CamiloVega commited on
Commit
feee98f
·
verified ·
1 Parent(s): 770d5ac

Delete readme-file.md

Browse files
Files changed (1) hide show
  1. readme-file.md +0 -64
readme-file.md DELETED
@@ -1,64 +0,0 @@
1
- ---
2
- title: FislacBot
3
- emoji: 📊
4
- colorFrom: blue
5
- colorTo: green
6
- sdk: gradio
7
- sdk_version: 5.4.0
8
- app_file: app.py
9
- pinned: false
10
- accelerator: gpu
11
- ---
12
-
13
- # FislacBot - AI Assistant for FISLAC Documentation
14
-
15
- FislacBot is an artificial intelligence assistant specialized in FISLAC (Fiscal Latin America and Caribbean) documentation and fiscal analysis. It uses the Llama-2-7b model with RAG (Retrieval Augmented Generation) to provide accurate responses based on official documentation.
16
-
17
- ## Author
18
- **Camilo Vega Barbosa**
19
- - AI Professor and Artificial Intelligence Solutions Consultant
20
- - Connect with me:
21
- - [LinkedIn](https://www.linkedin.com/in/camilo-vega-169084b1/)
22
- - [GitHub](https://github.com/CamiloVga)
23
-
24
- ## Features
25
- - RAG-powered responses using official FISLAC documentation
26
- - Interactive chat interface using Gradio
27
- - GPU-accelerated inference
28
- - Context-aware responses with source tracking
29
-
30
- ## How It Works
31
- The application uses a sophisticated RAG system that:
32
- 1. Processes and indexes FISLAC documentation
33
- 2. Generates embeddings using multilingual-e5-large
34
- 3. Uses FAISS for efficient vector storage and retrieval
35
- 4. Combines retrieved context with Llama-2 for accurate responses
36
-
37
- ## Technical Details
38
- - **Model**: Meta-llama/Llama-2-7b-chat-hf
39
- - **Embeddings**: intfloat/multilingual-e5-large
40
- - **Vector Store**: FAISS
41
- - **Framework**: Gradio
42
- - **Dependencies**: Managed through `requirements.txt`
43
- - **Device Configuration**: GPU-optimized using Accelerate
44
-
45
- ## Installation
46
- To run this application locally:
47
- 1. Clone the repository
48
- 2. Install dependencies:
49
- ```bash
50
- pip install -r requirements.txt
51
- ```
52
- 3. Run the application:
53
- ```bash
54
- python app.py
55
- ```
56
-
57
- ## Knowledge Base
58
- The system is trained on:
59
- - Official FISLAC documentation
60
- - Valencia et al. (2022) - "Assessing macro-fiscal risk for Latin American and Caribbean countries"
61
- - Additional BID fiscal documentation
62
-
63
- ---
64
- Created by Camilo Vega Barbosa, AI Professor and Solutions Consultant. For more AI projects and collaborations, feel free to connect on [LinkedIn](https://www.linkedin.com/in/camilo-vega-169084b1/) or visit my [GitHub](https://github.com/CamiloVga).