Spaces:
Sleeping
Sleeping
Delete readme-file.md
Browse files- readme-file.md +0 -64
readme-file.md
DELETED
@@ -1,64 +0,0 @@
|
|
1 |
-
---
|
2 |
-
title: FislacBot
|
3 |
-
emoji: 📊
|
4 |
-
colorFrom: blue
|
5 |
-
colorTo: green
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 5.4.0
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
accelerator: gpu
|
11 |
-
---
|
12 |
-
|
13 |
-
# FislacBot - AI Assistant for FISLAC Documentation
|
14 |
-
|
15 |
-
FislacBot is an artificial intelligence assistant specialized in FISLAC (Fiscal Latin America and Caribbean) documentation and fiscal analysis. It uses the Llama-2-7b model with RAG (Retrieval Augmented Generation) to provide accurate responses based on official documentation.
|
16 |
-
|
17 |
-
## Author
|
18 |
-
**Camilo Vega Barbosa**
|
19 |
-
- AI Professor and Artificial Intelligence Solutions Consultant
|
20 |
-
- Connect with me:
|
21 |
-
- [LinkedIn](https://www.linkedin.com/in/camilo-vega-169084b1/)
|
22 |
-
- [GitHub](https://github.com/CamiloVga)
|
23 |
-
|
24 |
-
## Features
|
25 |
-
- RAG-powered responses using official FISLAC documentation
|
26 |
-
- Interactive chat interface using Gradio
|
27 |
-
- GPU-accelerated inference
|
28 |
-
- Context-aware responses with source tracking
|
29 |
-
|
30 |
-
## How It Works
|
31 |
-
The application uses a sophisticated RAG system that:
|
32 |
-
1. Processes and indexes FISLAC documentation
|
33 |
-
2. Generates embeddings using multilingual-e5-large
|
34 |
-
3. Uses FAISS for efficient vector storage and retrieval
|
35 |
-
4. Combines retrieved context with Llama-2 for accurate responses
|
36 |
-
|
37 |
-
## Technical Details
|
38 |
-
- **Model**: Meta-llama/Llama-2-7b-chat-hf
|
39 |
-
- **Embeddings**: intfloat/multilingual-e5-large
|
40 |
-
- **Vector Store**: FAISS
|
41 |
-
- **Framework**: Gradio
|
42 |
-
- **Dependencies**: Managed through `requirements.txt`
|
43 |
-
- **Device Configuration**: GPU-optimized using Accelerate
|
44 |
-
|
45 |
-
## Installation
|
46 |
-
To run this application locally:
|
47 |
-
1. Clone the repository
|
48 |
-
2. Install dependencies:
|
49 |
-
```bash
|
50 |
-
pip install -r requirements.txt
|
51 |
-
```
|
52 |
-
3. Run the application:
|
53 |
-
```bash
|
54 |
-
python app.py
|
55 |
-
```
|
56 |
-
|
57 |
-
## Knowledge Base
|
58 |
-
The system is trained on:
|
59 |
-
- Official FISLAC documentation
|
60 |
-
- Valencia et al. (2022) - "Assessing macro-fiscal risk for Latin American and Caribbean countries"
|
61 |
-
- Additional BID fiscal documentation
|
62 |
-
|
63 |
-
---
|
64 |
-
Created by Camilo Vega Barbosa, AI Professor and Solutions Consultant. For more AI projects and collaborations, feel free to connect on [LinkedIn](https://www.linkedin.com/in/camilo-vega-169084b1/) or visit my [GitHub](https://github.com/CamiloVga).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|