Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
@@ -1,408 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import shutil
|
3 |
-
import logging
|
4 |
-
from typing import List, Dict
|
5 |
-
import torch
|
6 |
-
import gradio as gr
|
7 |
-
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
8 |
-
from langchain_community.embeddings import HuggingFaceEmbeddings
|
9 |
-
from langchain_community.vectorstores import FAISS
|
10 |
-
from langchain.chains import RetrievalQA
|
11 |
-
from langchain.prompts import PromptTemplate
|
12 |
-
from langchain_community.llms import HuggingFacePipeline
|
13 |
-
from langchain_community.document_loaders import PyPDFLoader, TextLoader, Docx2txtLoader
|
14 |
-
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
15 |
-
from huggingface_hub import login
|
16 |
-
|
17 |
-
# Configure logging
|
18 |
-
logging.basicConfig(
|
19 |
-
level=logging.INFO,
|
20 |
-
format='%(asctime)s - %(levelname)s - %(message)s'
|
21 |
-
)
|
22 |
-
logger = logging.getLogger(__name__)
|
23 |
-
|
24 |
-
# Constants
|
25 |
-
MODEL_NAME = "meta-llama/Llama-2-7b-chat-hf"
|
26 |
-
UPLOAD_FOLDER = "uploaded_docs"
|
27 |
-
EMBEDDING_MODEL = "intfloat/multilingual-e5-large"
|
28 |
-
|
29 |
-
class RAGSystem:
|
30 |
-
"""Main RAG system class."""
|
31 |
-
|
32 |
-
def __init__(self):
|
33 |
-
# Initialize device
|
34 |
-
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
35 |
-
logger.info(f"Using device: {self.device}")
|
36 |
-
|
37 |
-
# Initialize folders
|
38 |
-
self.upload_folder = UPLOAD_FOLDER
|
39 |
-
if os.path.exists(self.upload_folder):
|
40 |
-
shutil.rmtree(self.upload_folder)
|
41 |
-
os.makedirs(self.upload_folder, exist_ok=True)
|
42 |
-
|
43 |
-
# Set limits
|
44 |
-
self.max_files = 5
|
45 |
-
self.max_file_size = 10 * 1024 * 1024 # 10 MB
|
46 |
-
self.supported_formats = ['.pdf', '.txt', '.docx']
|
47 |
-
|
48 |
-
# Initialize components
|
49 |
-
self.embeddings = None
|
50 |
-
self.vector_store = None
|
51 |
-
self.qa_chain = None
|
52 |
-
self.documents = []
|
53 |
-
|
54 |
-
# Initialize embeddings
|
55 |
-
self.initialize_embeddings()
|
56 |
-
|
57 |
-
def initialize_embeddings(self):
|
58 |
-
"""Initialize embedding model."""
|
59 |
-
try:
|
60 |
-
self.embeddings = HuggingFaceEmbeddings(
|
61 |
-
model_name=EMBEDDING_MODEL,
|
62 |
-
model_kwargs={'device': self.device},
|
63 |
-
encode_kwargs={'normalize_embeddings': True}
|
64 |
-
)
|
65 |
-
logger.info(f"Embeddings initialized successfully on {self.device}")
|
66 |
-
except Exception as e:
|
67 |
-
logger.error(f"Error initializing embeddings: {str(e)}")
|
68 |
-
raise
|
69 |
-
|
70 |
-
def validate_file(self, file_path: str, file_size: int) -> bool:
|
71 |
-
"""Validate uploaded file."""
|
72 |
-
if file_size > self.max_file_size:
|
73 |
-
raise ValueError(f"File size exceeds {self.max_file_size // 1024 // 1024}MB limit")
|
74 |
-
|
75 |
-
ext = os.path.splitext(file_path)[1].lower()
|
76 |
-
if ext not in self.supported_formats:
|
77 |
-
raise ValueError(f"Unsupported format. Supported: {', '.join(self.supported_formats)}")
|
78 |
-
return True
|
79 |
-
|
80 |
-
def process_file(self, file: gr.File) -> List:
|
81 |
-
"""Process a single file and return documents."""
|
82 |
-
try:
|
83 |
-
file_path = file.name
|
84 |
-
file_size = os.path.getsize(file_path)
|
85 |
-
self.validate_file(file_path, file_size)
|
86 |
-
|
87 |
-
# Copy file to upload directory
|
88 |
-
filename = os.path.basename(file_path)
|
89 |
-
save_path = os.path.join(self.upload_folder, filename)
|
90 |
-
shutil.copy2(file_path, save_path)
|
91 |
-
|
92 |
-
# Load documents based on file type
|
93 |
-
ext = os.path.splitext(file_path)[1].lower()
|
94 |
-
if ext == '.pdf':
|
95 |
-
loader = PyPDFLoader(save_path)
|
96 |
-
elif ext == '.txt':
|
97 |
-
loader = TextLoader(save_path)
|
98 |
-
else: # .docx
|
99 |
-
loader = Docx2txtLoader(save_path)
|
100 |
-
|
101 |
-
documents = loader.load()
|
102 |
-
for doc in documents:
|
103 |
-
doc.metadata.update({
|
104 |
-
'source': filename,
|
105 |
-
'type': 'uploaded'
|
106 |
-
})
|
107 |
-
return documents
|
108 |
-
|
109 |
-
except Exception as e:
|
110 |
-
logger.error(f"Error processing {file_path}: {str(e)}")
|
111 |
-
raise
|
112 |
-
|
113 |
-
def update_vector_store(self, new_documents: List):
|
114 |
-
"""Update vector store with new documents."""
|
115 |
-
try:
|
116 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
117 |
-
chunk_size=500,
|
118 |
-
chunk_overlap=50,
|
119 |
-
separators=["\n\n", "\n", ". ", " ", ""]
|
120 |
-
)
|
121 |
-
chunks = text_splitter.split_documents(new_documents)
|
122 |
-
|
123 |
-
if self.vector_store is None:
|
124 |
-
self.vector_store = FAISS.from_documents(chunks, self.embeddings)
|
125 |
-
else:
|
126 |
-
self.vector_store.add_documents(chunks)
|
127 |
-
|
128 |
-
logger.info(f"Vector store updated with {len(chunks)} chunks")
|
129 |
-
|
130 |
-
except Exception as e:
|
131 |
-
logger.error(f"Error updating vector store: {str(e)}")
|
132 |
-
raise
|
133 |
-
|
134 |
-
def initialize_llm(self):
|
135 |
-
"""Initialize the language model and QA chain."""
|
136 |
-
try:
|
137 |
-
# Get Hugging Face token
|
138 |
-
hf_token = os.environ.get('HUGGINGFACE_TOKEN')
|
139 |
-
if not hf_token:
|
140 |
-
raise ValueError("Please set HUGGINGFACE_TOKEN environment variable")
|
141 |
-
|
142 |
-
# Login to Hugging Face
|
143 |
-
login(token=hf_token)
|
144 |
-
|
145 |
-
# Initialize model and tokenizer
|
146 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
147 |
-
MODEL_NAME,
|
148 |
-
token=hf_token,
|
149 |
-
trust_remote_code=True
|
150 |
-
)
|
151 |
-
|
152 |
-
# Configure model loading based on device
|
153 |
-
model_config = {
|
154 |
-
'device_map': 'auto',
|
155 |
-
'trust_remote_code': True,
|
156 |
-
'token': hf_token
|
157 |
-
}
|
158 |
-
|
159 |
-
if self.device == "cuda":
|
160 |
-
model_config['torch_dtype'] = torch.float16
|
161 |
-
else:
|
162 |
-
model_config['low_cpu_mem_usage'] = True
|
163 |
-
|
164 |
-
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, **model_config)
|
165 |
-
|
166 |
-
# Create pipeline
|
167 |
-
pipe = pipeline(
|
168 |
-
"text-generation",
|
169 |
-
model=model,
|
170 |
-
tokenizer=tokenizer,
|
171 |
-
max_new_tokens=512,
|
172 |
-
temperature=0.1,
|
173 |
-
device_map="auto"
|
174 |
-
)
|
175 |
-
|
176 |
-
llm = HuggingFacePipeline(pipeline=pipe)
|
177 |
-
|
178 |
-
# Create prompt template
|
179 |
-
prompt_template = """
|
180 |
-
Context: {context}
|
181 |
-
|
182 |
-
Based on the context above, please provide a clear and concise answer to the following question.
|
183 |
-
If the information is not in the context, explicitly state so.
|
184 |
-
|
185 |
-
Question: {question}
|
186 |
-
"""
|
187 |
-
|
188 |
-
PROMPT = PromptTemplate(
|
189 |
-
template=prompt_template,
|
190 |
-
input_variables=["context", "question"]
|
191 |
-
)
|
192 |
-
|
193 |
-
self.qa_chain = RetrievalQA.from_chain_type(
|
194 |
-
llm=llm,
|
195 |
-
chain_type="stuff",
|
196 |
-
retriever=self.vector_store.as_retriever(search_kwargs={"k": 4}),
|
197 |
-
return_source_documents=True,
|
198 |
-
chain_type_kwargs={"prompt": PROMPT}
|
199 |
-
)
|
200 |
-
|
201 |
-
logger.info("LLM initialized successfully")
|
202 |
-
|
203 |
-
except Exception as e:
|
204 |
-
logger.error(f"Error initializing LLM: {str(e)}")
|
205 |
-
raise
|
206 |
-
|
207 |
-
def process_upload(self, files: List[gr.File]) -> str:
|
208 |
-
"""Process uploaded files and initialize/update the system."""
|
209 |
-
if not files:
|
210 |
-
return "Please select files to upload."
|
211 |
-
|
212 |
-
try:
|
213 |
-
current_files = len(os.listdir(self.upload_folder))
|
214 |
-
if current_files + len(files) > self.max_files:
|
215 |
-
return f"Maximum number of documents ({self.max_files}) exceeded"
|
216 |
-
|
217 |
-
processed_files = []
|
218 |
-
new_documents = []
|
219 |
-
for file in files:
|
220 |
-
documents = self.process_file(file)
|
221 |
-
new_documents.extend(documents)
|
222 |
-
processed_files.append(os.path.basename(file.name))
|
223 |
-
|
224 |
-
self.update_vector_store(new_documents)
|
225 |
-
self.documents.extend(new_documents)
|
226 |
-
|
227 |
-
if self.qa_chain is None:
|
228 |
-
self.initialize_llm()
|
229 |
-
|
230 |
-
return f"Successfully processed: {', '.join(processed_files)}"
|
231 |
-
|
232 |
-
except Exception as e:
|
233 |
-
return f"Error: {str(e)}"
|
234 |
-
|
235 |
-
def generate_response(self, question: str) -> Dict:
|
236 |
-
"""Generate response for a given question."""
|
237 |
-
if not self.qa_chain:
|
238 |
-
return {"error": "System not initialized. Please upload documents first."}
|
239 |
-
|
240 |
-
try:
|
241 |
-
result = self.qa_chain({"query": question})
|
242 |
-
|
243 |
-
response = {
|
244 |
-
'answer': result['result'],
|
245 |
-
'sources': []
|
246 |
-
}
|
247 |
-
|
248 |
-
for doc in result['source_documents']:
|
249 |
-
source = {
|
250 |
-
'title': doc.metadata.get('source', 'Unknown'),
|
251 |
-
'content': doc.page_content[:200] + "..." if len(doc.page_content) > 200 else doc.page_content
|
252 |
-
}
|
253 |
-
response['sources'].append(source)
|
254 |
-
|
255 |
-
return response
|
256 |
-
|
257 |
-
except Exception as e:
|
258 |
-
logger.error(f"Error generating response: {str(e)}")
|
259 |
-
return {"error": str(e)}
|
260 |
-
|
261 |
-
# Initialize system
|
262 |
-
rag_system = RAGSystem()
|
263 |
-
|
264 |
-
def process_query(message: str, history: List) -> List:
|
265 |
-
"""Process user query and return updated history."""
|
266 |
-
try:
|
267 |
-
if not rag_system.qa_chain:
|
268 |
-
return history + [(message, "Please upload documents first.")]
|
269 |
-
|
270 |
-
response = rag_system.generate_response(message)
|
271 |
-
if "error" in response:
|
272 |
-
return history + [(message, f"Error: {response['error']}")]
|
273 |
-
|
274 |
-
answer = response['answer']
|
275 |
-
sources = set([source['title'] for source in response['sources']])
|
276 |
-
if sources:
|
277 |
-
answer += "\n\n📚 Sources:\n" + "\n".join([f"• {source}" for source in sources])
|
278 |
-
|
279 |
-
return history + [(message, answer)]
|
280 |
-
except Exception as e:
|
281 |
-
return history + [(message, f"Error: {str(e)}")]
|
282 |
-
|
283 |
-
# Create Gradio interface
|
284 |
-
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
285 |
-
gr.HTML("""
|
286 |
-
<div style="text-align: center; margin-bottom: 1rem;">
|
287 |
-
<h1 style="color: #2d333a;">🤖 Easy RAG</h1>
|
288 |
-
<p style="color: #4a5568;">A simple and powerful RAG system for your documents</p>
|
289 |
-
</div>
|
290 |
-
""")
|
291 |
-
|
292 |
-
with gr.Row():
|
293 |
-
with gr.Column(scale=1):
|
294 |
-
with gr.Group():
|
295 |
-
gr.HTML("""
|
296 |
-
<div style="padding: 1rem; border: 1px solid #e5e7eb; border-radius: 0.5rem; background-color: white;">
|
297 |
-
<h3 style="margin-top: 0;">📁 Upload Documents</h3>
|
298 |
-
""")
|
299 |
-
file_output = gr.File(
|
300 |
-
file_count="multiple",
|
301 |
-
label="Select Files",
|
302 |
-
elem_id="file-upload"
|
303 |
-
)
|
304 |
-
gr.HTML("""
|
305 |
-
<div style="font-size: 0.8em; color: #666;">
|
306 |
-
<p>• Maximum 5 files</p>
|
307 |
-
<p>• 10MB per file</p>
|
308 |
-
<p>• Supported: PDF, TXT, DOCX</p>
|
309 |
-
</div>
|
310 |
-
""")
|
311 |
-
system_output = gr.Textbox(
|
312 |
-
label="Status",
|
313 |
-
interactive=False
|
314 |
-
)
|
315 |
-
gr.HTML("</div>")
|
316 |
-
|
317 |
-
with gr.Column(scale=3):
|
318 |
-
chatbot = gr.Chatbot(
|
319 |
-
value=[],
|
320 |
-
label="Chat",
|
321 |
-
height=600,
|
322 |
-
show_copy_button=True
|
323 |
-
)
|
324 |
-
|
325 |
-
with gr.Row():
|
326 |
-
message = gr.Textbox(
|
327 |
-
placeholder="Ask a question about your documents...",
|
328 |
-
show_label=False,
|
329 |
-
container=False,
|
330 |
-
scale=8
|
331 |
-
)
|
332 |
-
clear = gr.Button("🗑️", size="sm", scale=1)
|
333 |
-
|
334 |
-
gr.HTML("""
|
335 |
-
<div style="text-align: center; max-width: 800px; margin: 20px auto; padding: 1rem;
|
336 |
-
background-color: #f8f9fa; border-radius: 10px;">
|
337 |
-
<div style="margin-bottom: 1rem;">
|
338 |
-
<h3 style="color: #2d333a;">🔍 About Easy RAG</h3>
|
339 |
-
<p style="color: #666; font-size: 0.9em;">
|
340 |
-
Powered by state-of-the-art AI technology:
|
341 |
-
</p>
|
342 |
-
<ul style="list-style: none; color: #666; font-size: 0.9em;">
|
343 |
-
<li>🔹 LLM: Llama-2-7b-chat-hf</li>
|
344 |
-
<li>🔹 Embeddings: multilingual-e5-large</li>
|
345 |
-
<li>🔹 Vector Store: FAISS</li>
|
346 |
-
</ul>
|
347 |
-
</div>
|
348 |
-
<div style="border-top: 1px solid #ddd; padding-top: 1rem;">
|
349 |
-
<p style="color: #666; font-size: 0.8em;">
|
350 |
-
Based on original work by <a href="https://www.linkedin.com/in/camilo-vega-169084b1/"
|
351 |
-
target="_blank" style="color: #2196F3; text-decoration: none;">Camilo Vega</a>
|
352 |
-
</p>
|
353 |
-
</div>
|
354 |
-
</div>
|
355 |
-
""")
|
356 |
-
|
357 |
-
# Set up event handlers
|
358 |
-
file_output.upload(
|
359 |
-
rag_system.process_upload,
|
360 |
-
inputs=[file_output],
|
361 |
-
outputs=[system_output]
|
362 |
-
)
|
363 |
-
|
364 |
-
message.submit(
|
365 |
-
process_query,
|
366 |
-
inputs=[message, chatbot],
|
367 |
-
outputs=[chatbot]
|
368 |
-
)
|
369 |
-
|
370 |
-
clear.click(lambda: None, None, chatbot)
|
371 |
-
|
372 |
-
if __name__ == "__main__":
|
373 |
-
# Log system information
|
374 |
-
logger.info("Starting Easy RAG system...")
|
375 |
-
logger.info(f"PyTorch version: {torch.__version__}")
|
376 |
-
logger.info(f"CUDA available: {torch.cuda.is_available()}")
|
377 |
-
if torch.cuda.is_available():
|
378 |
-
logger.info(f"CUDA device: {torch.cuda.get_device_name(0)}")
|
379 |
-
else:
|
380 |
-
logger.info("Running on CPU mode with optimizations")
|
381 |
-
|
382 |
-
# Check for HUGGINGFACE_TOKEN
|
383 |
-
if not os.environ.get('HUGGINGFACE_TOKEN'):
|
384 |
-
logger.warning("HUGGINGFACE_TOKEN not found in environment variables")
|
385 |
-
logger.warning("Please set it before running the application")
|
386 |
-
print("Please set your HUGGINGFACE_TOKEN environment variable")
|
387 |
-
print("Example: export HUGGINGFACE_TOKEN=your_token_here")
|
388 |
-
exit(1)
|
389 |
-
|
390 |
-
# Get sharing preference from environment
|
391 |
-
share_enabled = os.environ.get('SHARE_APP', 'false').lower() == 'true'
|
392 |
-
if share_enabled:
|
393 |
-
logger.info("Public sharing is enabled - a public URL will be generated")
|
394 |
-
|
395 |
-
try:
|
396 |
-
# Launch the application
|
397 |
-
demo.launch(
|
398 |
-
server_name="0.0.0.0", # Listen on all network interfaces
|
399 |
-
server_port=7860, # Default Gradio port
|
400 |
-
share=share_enabled, # Generate public URL if enabled
|
401 |
-
show_error=True, # Show detailed error messages
|
402 |
-
quiet=True # Reduce console output noise
|
403 |
-
)
|
404 |
-
except KeyboardInterrupt:
|
405 |
-
logger.info("Shutting down server...")
|
406 |
-
except Exception as e:
|
407 |
-
logger.error(f"Error launching server: {str(e)}")
|
408 |
-
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|