Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,884 Bytes
ce57b87 26e73b2 ce57b87 d704913 ce57b87 d704913 ce57b87 d704913 ce57b87 26e73b2 ce57b87 26e73b2 ce57b87 26e73b2 ce57b87 26e73b2 ce57b87 26e73b2 ce57b87 630fea2 ce57b87 26e73b2 ce57b87 26e73b2 ce57b87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
import os
import logging
from typing import List, Dict
import torch
import gradio as gr
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from langchain.llms import HuggingFacePipeline
from langchain_community.document_loaders import (
PyPDFLoader,
Docx2txtLoader,
CSVLoader,
UnstructuredFileLoader
)
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import spaces
import tempfile
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Constants
MODEL_NAME = "meta-llama/Llama-2-7b-chat-hf"
SUPPORTED_FORMATS = [".pdf", ".docx", ".doc", ".csv", ".txt"]
class DocumentLoader:
"""Enhanced document loader supporting multiple file formats."""
@staticmethod
def load_file(file_path: str) -> List:
"""Load a single file based on its extension."""
ext = os.path.splitext(file_path)[1].lower()
try:
if ext == '.pdf':
loader = PyPDFLoader(file_path)
elif ext in ['.docx', '.doc']:
loader = Docx2txtLoader(file_path)
elif ext == '.csv':
loader = CSVLoader(file_path)
else: # fallback for txt and other text files
loader = UnstructuredFileLoader(file_path)
documents = loader.load()
# Add metadata
for doc in documents:
doc.metadata.update({
'title': os.path.basename(file_path),
'type': 'document',
'format': ext[1:],
'language': 'auto'
})
logger.info(f"Successfully loaded {file_path}")
return documents
except Exception as e:
logger.error(f"Error loading {file_path}: {str(e)}")
raise
class RAGSystem:
"""Enhanced RAG system with dynamic document loading."""
def __init__(self, model_name: str = MODEL_NAME):
self.model_name = model_name
self.embeddings = None
self.vector_store = None
self.qa_chain = None
self.tokenizer = None
self.model = None
self.is_initialized = False
self.processed_files = set() # Mantener registro de archivos procesados
def initialize_model(self):
"""Initialize the base model and tokenizer."""
try:
logger.info("Initializing language model...")
# Initialize embeddings
self.embeddings = HuggingFaceEmbeddings(
model_name="intfloat/multilingual-e5-large",
model_kwargs={'device': 'cuda' if torch.cuda.is_available() else 'cpu'},
encode_kwargs={'normalize_embeddings': True}
)
# Initialize model and tokenizer
# Get HuggingFace token
hf_token = os.environ.get('HUGGINGFACE_TOKEN') or os.environ.get('HF_TOKEN')
if not hf_token:
raise ValueError("No Hugging Face token found. Please set HUGGINGFACE_TOKEN in your environment variables")
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
token=hf_token, # Add token here
trust_remote_code=True
)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
token=hf_token, # Add token here
torch_dtype=torch.float16,
trust_remote_code=True,
device_map="auto"
)
# Create generation pipeline
pipe = pipeline(
"text-generation",
model=self.model,
tokenizer=self.tokenizer,
max_new_tokens=512,
temperature=0.1,
top_p=0.95,
repetition_penalty=1.15,
device_map="auto"
)
self.llm = HuggingFacePipeline(pipeline=pipe)
self.is_initialized = True
logger.info("Model initialization completed")
except Exception as e:
logger.error(f"Error during model initialization: {str(e)}")
raise
def process_documents(self, files: List[tempfile._TemporaryFileWrapper]) -> None:
"""Process uploaded documents and update the vector store."""
try:
documents = []
new_files = []
# Procesar solo archivos nuevos
for file in files:
if file.name not in self.processed_files:
docs = DocumentLoader.load_file(file.name)
documents.extend(docs)
new_files.append(file.name)
self.processed_files.add(file.name)
if not new_files:
logger.info("No new documents to process")
return
if not documents:
raise ValueError("No documents were successfully loaded.")
# Process documents
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=800,
chunk_overlap=200,
separators=["\n\n", "\n", ". ", " ", ""],
length_function=len
)
chunks = text_splitter.split_documents(documents)
# Create or update vector store
if self.vector_store is None:
self.vector_store = FAISS.from_documents(chunks, self.embeddings)
else:
self.vector_store.add_documents(chunks)
# Initialize QA chain
prompt_template = """
Context: {context}
Based on the provided context, please answer the following question clearly and concisely.
If the information is not in the context, please say so explicitly.
Question: {question}
"""
PROMPT = PromptTemplate(
template=prompt_template,
input_variables=["context", "question"]
)
self.qa_chain = RetrievalQA.from_chain_type(
llm=self.llm,
chain_type="stuff",
retriever=self.vector_store.as_retriever(
search_kwargs={"k": 6}
),
return_source_documents=True,
chain_type_kwargs={"prompt": PROMPT}
)
logger.info(f"Successfully processed {len(documents)} documents")
except Exception as e:
logger.error(f"Error processing documents: {str(e)}")
raise
def generate_response(self, question: str) -> Dict:
"""Generate response for a given question."""
if not self.is_initialized or self.qa_chain is None:
return {
'answer': "Please upload some documents first before asking questions.",
'sources': []
}
try:
result = self.qa_chain({"query": question})
response = {
'answer': result['result'],
'sources': []
}
for doc in result['source_documents']:
source = {
'title': doc.metadata.get('title', 'Unknown'),
'content': doc.page_content[:200] + "..." if len(doc.page_content) > 200 else doc.page_content,
'metadata': doc.metadata
}
response['sources'].append(source)
return response
except Exception as e:
logger.error(f"Error generating response: {str(e)}")
raise
@spaces.GPU(duration=60)
def process_response(user_input: str, chat_history: List, files: List) -> tuple:
"""Process user input and generate response."""
try:
if not rag_system.is_initialized:
rag_system.initialize_model()
# Siempre procesar documentos si hay archivos nuevos
if files:
rag_system.process_documents(files)
response = rag_system.generate_response(user_input)
# Clean and format response
answer = response['answer']
if "Answer:" in answer:
answer = answer.split("Answer:")[-1].strip()
# Format sources
sources = set([source['title'] for source in response['sources'][:3]])
if sources:
answer += "\n\nπ Sources consulted:\n" + "\n".join([f"β’ {source}" for source in sources])
chat_history.append((user_input, answer))
return chat_history
except Exception as e:
logger.error(f"Error in process_response: {str(e)}")
error_message = f"Sorry, an error occurred: {str(e)}"
chat_history.append((user_input, error_message))
return chat_history
# Initialize RAG system
logger.info("Initializing RAG system...")
try:
rag_system = RAGSystem()
logger.info("RAG system created successfully")
except Exception as e:
logger.error(f"Failed to create RAG system: {str(e)}")
raise
# Create Gradio interface
try:
logger.info("Creating Gradio interface...")
with gr.Blocks(css="div.gradio-container {background-color: #f0f2f6}") as demo:
gr.HTML("""
<div style="text-align: center; max-width: 800px; margin: 0 auto; padding: 20px;">
<h1 style="color: #2d333a;">π Easy RAG</h1>
<p style="color: #4a5568;">
Your AI Assistant for Document Analysis and Q&A
</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
files = gr.Files(
label="Upload Your Documents",
file_types=SUPPORTED_FORMATS,
file_count="multiple"
)
gr.HTML("""
<div style="font-size: 0.9em; color: #666; margin-top: 0.5em;">
Supported formats: PDF, DOCX, CSV, TXT
</div>
""")
chatbot = gr.Chatbot(
show_label=False,
container=True,
height=500,
bubble_full_width=True,
show_copy_button=True,
scale=2
)
with gr.Row():
message = gr.Textbox(
placeholder="π Ask me anything about your documents...",
show_label=False,
container=False,
scale=8,
autofocus=True
)
clear = gr.Button("ποΈ Clear", size="sm", scale=1)
# Instructions
gr.HTML("""
<div style="background-color: #f8f9fa; padding: 15px; border-radius: 10px; margin: 20px 0;">
<h3 style="color: #2d333a; margin-bottom: 10px;">π How to use:</h3>
<ol style="color: #666; margin-left: 20px;">
<li>Upload one or more documents (PDF, DOCX, CSV, or TXT)</li>
<li>Wait for the documents to be processed</li>
<li>Ask questions about your documents</li>
<li>View sources used in the responses</li>
</ol>
</div>
""")
# Footer with credits
gr.HTML("""
<div style="text-align: center; max-width: 800px; margin: 20px auto; padding: 20px;
background-color: #f8f9fa; border-radius: 10px;">
<div style="margin-bottom: 15px;">
<h3 style="color: #2d333a;">β‘ About this assistant</h3>
<p style="color: #666; font-size: 14px;">
This application uses RAG (Retrieval Augmented Generation) technology combining:
</p>
<ul style="list-style: none; color: #666; font-size: 14px;">
<li>πΉ LLM Engine: Llama-2-7b-chat-hf</li>
<li>πΉ Embeddings: multilingual-e5-large</li>
<li>πΉ Vector Store: FAISS</li>
</ul>
</div>
<div style="border-top: 1px solid #ddd; padding-top: 15px;">
<p style="color: #666; font-size: 14px;">
Created by <a href="https://www.linkedin.com/in/camilo-vega-169084b1/"
target="_blank" style="color: #2196F3; text-decoration: none;">Camilo Vega</a>,
AI Professor and Solutions Consultant π€
</p>
</div>
</div>
""")
# Configure event handlers
def submit(user_input, chat_history, files):
return process_response(user_input, chat_history, files)
def clear_context():
# Limpiar el historial y reiniciar el sistema
rag_system.vector_store = None
rag_system.processed_files.clear()
return None
message.submit(submit, [message, chatbot, files], [chatbot])
clear.click(clear_context, None, chatbot)
logger.info("Gradio interface created successfully")
demo.launch()
except Exception as e:
logger.error(f"Error in Gradio interface creation: {str(e)}")
raise |