Spaces:
Running
Running
copy in the backend code
Browse files- custom_llm.py +170 -0
- custom_llm_inference.py +193 -0
custom_llm.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import time
|
4 |
+
from contextlib import asynccontextmanager
|
5 |
+
from pathlib import Path
|
6 |
+
from typing import Dict, List, Optional
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import uvicorn
|
10 |
+
from fastapi import FastAPI, HTTPException
|
11 |
+
from fastapi.middleware.cors import CORSMiddleware
|
12 |
+
from fastapi.testclient import TestClient
|
13 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
14 |
+
|
15 |
+
from custom_llm_inference import get_highlights_inner, get_next_token_predictions_inner
|
16 |
+
|
17 |
+
ml_models = {}
|
18 |
+
|
19 |
+
parser = argparse.ArgumentParser()
|
20 |
+
parser.add_argument("--gpu", action="store_true", help="Enable GPU usage")
|
21 |
+
args = parser.parse_args()
|
22 |
+
|
23 |
+
USE_GPU = args.gpu
|
24 |
+
|
25 |
+
if not USE_GPU:
|
26 |
+
print("Running without GPU. To enable GPU, run with the --gpu flag.")
|
27 |
+
|
28 |
+
@asynccontextmanager
|
29 |
+
async def models_lifespan(app: FastAPI):
|
30 |
+
|
31 |
+
#model_name = 'google/gemma-1.1-7b-it'
|
32 |
+
#model_name = 'google/gemma-1.1-2b-it'
|
33 |
+
model_name = 'google/gemma-2-9b-it'
|
34 |
+
|
35 |
+
dtype = torch.bfloat16 if USE_GPU else torch.float16
|
36 |
+
|
37 |
+
ml_models["llm"] = llm = {
|
38 |
+
'tokenizer': AutoTokenizer.from_pretrained(model_name),
|
39 |
+
'model': AutoModelForCausalLM.from_pretrained(model_name, device_map="auto" if USE_GPU else "cpu", torch_dtype=dtype)
|
40 |
+
}
|
41 |
+
print("Loaded llm with device map:")
|
42 |
+
print(llm['model'].hf_device_map)
|
43 |
+
|
44 |
+
# Print timing info for each endpoint
|
45 |
+
print("\nRunning endpoint tests...")
|
46 |
+
|
47 |
+
test_doc = "This is a test document that needs to be revised for clarity and conciseness."
|
48 |
+
test_prompt = "Make this more clear and concise."
|
49 |
+
|
50 |
+
client = TestClient(app)
|
51 |
+
|
52 |
+
start = time.time()
|
53 |
+
response = client.get("/api/highlights",
|
54 |
+
params={"doc": test_doc, "prompt": test_prompt})
|
55 |
+
print(f"Highlights endpoint: {time.time() - start:.2f}s")
|
56 |
+
|
57 |
+
start = time.time()
|
58 |
+
response = client.get("/api/next_token",
|
59 |
+
params={"original_doc": test_doc, "prompt": test_prompt, "doc_in_progress": "This is"})
|
60 |
+
print(f"Next token endpoint: {time.time() - start:.2f}s")
|
61 |
+
|
62 |
+
start = time.time()
|
63 |
+
response = client.get("/api/gen_revisions",
|
64 |
+
params={"doc": test_doc, "prompt": test_prompt, "n": 1})
|
65 |
+
print(f"Gen revisions endpoint: {time.time() - start:.2f}s")
|
66 |
+
|
67 |
+
yield
|
68 |
+
|
69 |
+
# Release resources on exit
|
70 |
+
ml_models.clear()
|
71 |
+
|
72 |
+
DEBUG = os.getenv("DEBUG") or False
|
73 |
+
PORT = int(os.getenv("PORT") or "19570")
|
74 |
+
|
75 |
+
app = FastAPI(lifespan=models_lifespan)
|
76 |
+
|
77 |
+
origins = [
|
78 |
+
"*",
|
79 |
+
]
|
80 |
+
|
81 |
+
app.add_middleware(
|
82 |
+
CORSMiddleware,
|
83 |
+
allow_origins=origins,
|
84 |
+
allow_credentials=True,
|
85 |
+
allow_methods=["*"],
|
86 |
+
allow_headers=["*"],
|
87 |
+
)
|
88 |
+
|
89 |
+
|
90 |
+
@app.get("/api/highlights")
|
91 |
+
def get_highlights(doc: str, prompt: Optional[str] = None, updated_doc: Optional[str] = '', k: Optional[int] = 5):
|
92 |
+
''' Example of using this in JavaScript:
|
93 |
+
|
94 |
+
let url = new URL('http://localhost:8000/api/highlights')
|
95 |
+
url.searchParams.append('doc', 'This is a test document. It is a test document because it is a test document.')
|
96 |
+
url.searchParams.append('prompt', 'Rewrite this document to be more concise.')
|
97 |
+
url.searchParams.append('updated_doc', 'This is a test document.')
|
98 |
+
let response = await fetch(url)
|
99 |
+
'''
|
100 |
+
|
101 |
+
llm = ml_models['llm']
|
102 |
+
model = llm['model']
|
103 |
+
tokenizer = llm['tokenizer']
|
104 |
+
|
105 |
+
if prompt is None:
|
106 |
+
prompt = "Rewrite this document to be more concise."
|
107 |
+
|
108 |
+
highlights = get_highlights_inner(model, tokenizer, doc, prompt, updated_doc, k)
|
109 |
+
|
110 |
+
return {'highlights': highlights}
|
111 |
+
|
112 |
+
|
113 |
+
@app.get('/api/next_token')
|
114 |
+
def get_next_token_predictions(original_doc: str,
|
115 |
+
prompt: str,
|
116 |
+
doc_in_progress: str,
|
117 |
+
k: Optional[int] = 5):
|
118 |
+
|
119 |
+
|
120 |
+
model = ml_models['llm']['model']
|
121 |
+
tokenizer = ml_models['llm']['tokenizer']
|
122 |
+
|
123 |
+
decoded_next_tokens, next_token_logits = get_next_token_predictions_inner(
|
124 |
+
model, tokenizer, original_doc, prompt, doc_in_progress, k)
|
125 |
+
|
126 |
+
return {
|
127 |
+
'next_tokens': decoded_next_tokens
|
128 |
+
}
|
129 |
+
|
130 |
+
|
131 |
+
@app.get('/api/gen_revisions')
|
132 |
+
def gen_revisions(
|
133 |
+
prompt: str,
|
134 |
+
doc: str,
|
135 |
+
n: Optional[int] = 5):
|
136 |
+
|
137 |
+
|
138 |
+
model = ml_models['llm']['model']
|
139 |
+
tokenizer = ml_models['llm']['tokenizer']
|
140 |
+
|
141 |
+
messages = [
|
142 |
+
{
|
143 |
+
"role": "user",
|
144 |
+
"content": f"{prompt}\n\n{doc}",
|
145 |
+
},
|
146 |
+
]
|
147 |
+
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
148 |
+
|
149 |
+
generations = model.generate(
|
150 |
+
tokenized_chat, num_return_sequences=n,
|
151 |
+
max_length=1024, do_sample=True, top_k=50, top_p=0.95, temperature=0.5,
|
152 |
+
return_dict_in_generate=True, output_scores=True)
|
153 |
+
generated_docs = tokenizer.batch_decode(generations.sequences, skip_special_tokens=True)
|
154 |
+
#print(generations.scores)
|
155 |
+
|
156 |
+
# Remove prompt text. see https://github.com/huggingface/transformers/blob/v4.46.2/src/transformers/pipelines/text_generation.py#L37
|
157 |
+
prompt_length = len(
|
158 |
+
tokenizer.decode(
|
159 |
+
tokenized_chat[0],
|
160 |
+
skip_special_tokens=True,
|
161 |
+
clean_up_tokenization_spaces=True,
|
162 |
+
))
|
163 |
+
|
164 |
+
return {
|
165 |
+
'revised_docs': [dict(doc_text=doc[prompt_length:]) for doc in generated_docs]
|
166 |
+
}
|
167 |
+
|
168 |
+
|
169 |
+
if __name__ == "__main__":
|
170 |
+
uvicorn.run(app, host="localhost", port=PORT)
|
custom_llm_inference.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers.cache_utils import DynamicCache
|
3 |
+
|
4 |
+
|
5 |
+
def get_tokenized_chat(tokenizer, prompt, doc):
|
6 |
+
messages = [
|
7 |
+
{
|
8 |
+
"role": "user",
|
9 |
+
"content": f"{prompt}\n\n{doc}",
|
10 |
+
},
|
11 |
+
]
|
12 |
+
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")[0]
|
13 |
+
return tokenized_chat
|
14 |
+
|
15 |
+
|
16 |
+
def tokenize_doc_in_progress(tokenizer, doc_in_progress):
|
17 |
+
if len(doc_in_progress) == 0:
|
18 |
+
# Some tokenizers give tensors of the wrong dtype if the input is empty
|
19 |
+
return torch.empty(0, dtype=torch.int64)
|
20 |
+
|
21 |
+
doc_in_progress_ids = tokenizer(
|
22 |
+
doc_in_progress, return_tensors='pt')['input_ids'][0]
|
23 |
+
|
24 |
+
# strip the first token, the "beginning of document" token
|
25 |
+
# TODO: make this robust to switching models
|
26 |
+
# since some models will use different special tokens
|
27 |
+
doc_in_progress_ids = doc_in_progress_ids[1:]
|
28 |
+
return doc_in_progress_ids
|
29 |
+
|
30 |
+
|
31 |
+
def get_highlights_inner(model, tokenizer, doc, prompt, updated_doc, k):
|
32 |
+
tokenized_chat = get_tokenized_chat(tokenizer, prompt, doc)
|
33 |
+
assert len(tokenized_chat.shape) == 1
|
34 |
+
|
35 |
+
if updated_doc is None or len(updated_doc.strip()) == 0:
|
36 |
+
updated_doc = doc
|
37 |
+
updated_doc_ids = tokenize_doc_in_progress(tokenizer, updated_doc)
|
38 |
+
|
39 |
+
joined_ids = torch.cat([tokenized_chat, updated_doc_ids])
|
40 |
+
# Call the model
|
41 |
+
with torch.no_grad():
|
42 |
+
logits = model(joined_ids[None].to(model.device)).logits[0].cpu()
|
43 |
+
|
44 |
+
highlights = []
|
45 |
+
length_so_far = 0
|
46 |
+
for idx in range(len(tokenized_chat), len(joined_ids)):
|
47 |
+
probs = logits[idx - 1].softmax(dim=-1)
|
48 |
+
token_id = joined_ids[idx]
|
49 |
+
token = tokenizer.decode(token_id)
|
50 |
+
token_loss = -probs[token_id].log().item()
|
51 |
+
topk_tokens = probs.topk(k).indices.cpu().numpy().tolist()
|
52 |
+
topk_tokens_decoded = tokenizer.batch_decode(topk_tokens, skip_special_tokens=True)
|
53 |
+
highlights.append(dict(
|
54 |
+
start=length_so_far,
|
55 |
+
end=length_so_far + len(token),
|
56 |
+
token=token,
|
57 |
+
token_loss=token_loss,
|
58 |
+
most_likely_token=topk_tokens_decoded[0],
|
59 |
+
topk_tokens=topk_tokens_decoded,
|
60 |
+
))
|
61 |
+
length_so_far += len(token)
|
62 |
+
return highlights
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
+
def get_next_token_predictions_inner(
|
67 |
+
model, tokenizer, original_doc, prompt, doc_in_progress, k):
|
68 |
+
|
69 |
+
tokenized_chat = get_tokenized_chat(tokenizer, prompt, original_doc)
|
70 |
+
doc_in_progress_ids = tokenize_doc_in_progress(tokenizer, doc_in_progress)
|
71 |
+
|
72 |
+
device = model.device
|
73 |
+
|
74 |
+
joined_ids = torch.cat([tokenized_chat, doc_in_progress_ids])
|
75 |
+
hypotheses = joined_ids[None].to(model.device)
|
76 |
+
|
77 |
+
# For each of the k next tokens, generate most-likely next tokens and append back on until we
|
78 |
+
# reach a token with a space
|
79 |
+
|
80 |
+
past_key_values = DynamicCache()
|
81 |
+
|
82 |
+
with torch.no_grad():
|
83 |
+
model_outs_onestep = model(hypotheses, output_hidden_states=True, past_key_values=past_key_values)
|
84 |
+
|
85 |
+
branch_tokens = model_outs_onestep.logits[0, -1].topk(k).indices
|
86 |
+
|
87 |
+
# split the cache into k reps. We pretend we're doing a "Beam search"...
|
88 |
+
past_key_values.reorder_cache(torch.zeros((k,), dtype=torch.long, device=device))
|
89 |
+
|
90 |
+
# Now call the model again, passing the kv cache, so we can continue generating.
|
91 |
+
# Each of the k next tokens will be considered as one sequence in a "batch".
|
92 |
+
next_tokens_as_batch = branch_tokens.unsqueeze(1)
|
93 |
+
assert next_tokens_as_batch.shape == (k, 1)
|
94 |
+
|
95 |
+
position_id_for_final_token = joined_ids.shape[0]
|
96 |
+
cache_position = torch.full((1,), position_id_for_final_token, dtype=int, device=device)
|
97 |
+
with torch.no_grad():
|
98 |
+
model_outs = model(
|
99 |
+
next_tokens_as_batch,
|
100 |
+
past_key_values=past_key_values,
|
101 |
+
output_hidden_states=True,
|
102 |
+
use_cache=True,
|
103 |
+
# the cache surprisingly doesn't know the position of the last token
|
104 |
+
cache_position=cache_position
|
105 |
+
)
|
106 |
+
|
107 |
+
# Grab the single most likely token from each of the k sequences
|
108 |
+
next_token_logits = model_outs.logits[:, -1]
|
109 |
+
vocab_size = model.config.vocab_size
|
110 |
+
assert next_token_logits.shape == (k, vocab_size), f"{next_token_logits.shape=}, {k=}, {vocab_size=}"
|
111 |
+
most_likely_token_ids = next_token_logits.argmax(dim=-1)
|
112 |
+
|
113 |
+
# Stick them at the end of the branch tokens.
|
114 |
+
assert most_likely_token_ids.shape == (k,)
|
115 |
+
lookahead_sequences = torch.cat([
|
116 |
+
branch_tokens.unsqueeze(1),
|
117 |
+
most_likely_token_ids.unsqueeze(1)
|
118 |
+
], dim=1)
|
119 |
+
assert lookahead_sequences.shape == (k, 2)
|
120 |
+
|
121 |
+
decoded_next_tokens = tokenizer.batch_decode(lookahead_sequences, skip_special_tokens=True)
|
122 |
+
return decoded_next_tokens, next_token_logits
|
123 |
+
|
124 |
+
def get_next_token_predictions_generate(
|
125 |
+
model, tokenizer, original_doc, prompt, doc_in_progress, k):
|
126 |
+
|
127 |
+
tokenized_chat = get_tokenized_chat(tokenizer, prompt, original_doc)
|
128 |
+
doc_in_progress_ids = tokenize_doc_in_progress(tokenizer, doc_in_progress)
|
129 |
+
|
130 |
+
joined_ids = torch.cat([tokenized_chat, doc_in_progress_ids])
|
131 |
+
context_without_special_tokens = tokenizer.batch_decode(joined_ids, skip_special_tokens=True)
|
132 |
+
prefix_length = len(context_without_special_tokens)
|
133 |
+
hypotheses = joined_ids[None].to(model.device)
|
134 |
+
|
135 |
+
generation_output = model.generate(
|
136 |
+
hypotheses,
|
137 |
+
return_dict_in_generate=True,
|
138 |
+
output_scores=True,
|
139 |
+
num_beams=5, num_beam_groups=5, max_new_tokens=10, do_sample=False, diversity_penalty=1e5, top_k=None, num_return_sequences=5)#, token_healing=True, tokenizer=tokenizer)
|
140 |
+
sequences = [
|
141 |
+
decoded[prefix_length:]
|
142 |
+
for decoded in tokenizer.batch_decode(generation_output.sequences, skip_special_tokens=True)
|
143 |
+
]
|
144 |
+
return sequences,
|
145 |
+
|
146 |
+
|
147 |
+
def get_next_token_predictions_slow(
|
148 |
+
model, tokenizer, original_doc, prompt, doc_in_progress, k):
|
149 |
+
|
150 |
+
tokenized_chat = get_tokenized_chat(tokenizer, prompt, original_doc)
|
151 |
+
doc_in_progress_ids = tokenize_doc_in_progress(tokenizer, doc_in_progress)
|
152 |
+
|
153 |
+
joined_ids = torch.cat([tokenized_chat, doc_in_progress_ids])
|
154 |
+
hypotheses = joined_ids[None].to(model.device)
|
155 |
+
|
156 |
+
# For each of the k next tokens, generate most-likely next tokens and append back on until we
|
157 |
+
# reach a token with a space
|
158 |
+
|
159 |
+
with torch.no_grad():
|
160 |
+
model_outs = model(hypotheses, output_hidden_states=True)
|
161 |
+
|
162 |
+
next_token_logits = model_outs.logits[0, -1]
|
163 |
+
branch_tokens = next_token_logits.topk(k).indices
|
164 |
+
|
165 |
+
# Slow mode: concat the branch tokens to the hypotheses.
|
166 |
+
# Then call the model on the full sequence.
|
167 |
+
# This is slow because the beginning of the sequence is re-processed each time.
|
168 |
+
|
169 |
+
hypotheses_with_next_tokens = torch.cat([
|
170 |
+
torch.repeat_interleave(hypotheses, k, dim=0),
|
171 |
+
branch_tokens.unsqueeze(1)
|
172 |
+
], dim=1)
|
173 |
+
assert hypotheses_with_next_tokens.shape == (k, len(joined_ids) + 1)
|
174 |
+
|
175 |
+
with torch.no_grad():
|
176 |
+
model_outs = model(hypotheses_with_next_tokens)
|
177 |
+
|
178 |
+
# Grab the single most likely token from each of the k sequences
|
179 |
+
next_token_logits = model_outs.logits[:, -1]
|
180 |
+
vocab_size = model.config.vocab_size
|
181 |
+
assert next_token_logits.shape == (k, vocab_size), f"{next_token_logits.shape=}, {k=}, {vocab_size=}"
|
182 |
+
most_likely_token_ids = next_token_logits.argmax(dim=-1)
|
183 |
+
|
184 |
+
# Stick them at the end of the branch tokens.
|
185 |
+
assert most_likely_token_ids.shape == (k,)
|
186 |
+
lookahead_sequences = torch.cat([
|
187 |
+
branch_tokens.unsqueeze(1),
|
188 |
+
most_likely_token_ids.unsqueeze(1)
|
189 |
+
], dim=1)
|
190 |
+
assert lookahead_sequences.shape == (k, 2)
|
191 |
+
|
192 |
+
decoded_next_tokens = tokenizer.batch_decode(lookahead_sequences, skip_special_tokens=True)
|
193 |
+
return decoded_next_tokens, next_token_logits
|