|
import paddle |
|
import numpy as np |
|
import copy |
|
|
|
|
|
def org_tcl_rois(batch_size, pos_lists, pos_masks, label_lists, tcl_bs): |
|
""" |
|
""" |
|
pos_lists_, pos_masks_, label_lists_ = [], [], [] |
|
img_bs = batch_size |
|
ngpu = int(batch_size / img_bs) |
|
img_ids = np.array(pos_lists, dtype=np.int32)[:, 0, 0].copy() |
|
pos_lists_split, pos_masks_split, label_lists_split = [], [], [] |
|
for i in range(ngpu): |
|
pos_lists_split.append([]) |
|
pos_masks_split.append([]) |
|
label_lists_split.append([]) |
|
|
|
for i in range(img_ids.shape[0]): |
|
img_id = img_ids[i] |
|
gpu_id = int(img_id / img_bs) |
|
img_id = img_id % img_bs |
|
pos_list = pos_lists[i].copy() |
|
pos_list[:, 0] = img_id |
|
pos_lists_split[gpu_id].append(pos_list) |
|
pos_masks_split[gpu_id].append(pos_masks[i].copy()) |
|
label_lists_split[gpu_id].append(copy.deepcopy(label_lists[i])) |
|
|
|
for i in range(ngpu): |
|
vp_len = len(pos_lists_split[i]) |
|
if vp_len <= tcl_bs: |
|
for j in range(0, tcl_bs - vp_len): |
|
pos_list = pos_lists_split[i][j].copy() |
|
pos_lists_split[i].append(pos_list) |
|
pos_mask = pos_masks_split[i][j].copy() |
|
pos_masks_split[i].append(pos_mask) |
|
label_list = copy.deepcopy(label_lists_split[i][j]) |
|
label_lists_split[i].append(label_list) |
|
else: |
|
for j in range(0, vp_len - tcl_bs): |
|
c_len = len(pos_lists_split[i]) |
|
pop_id = np.random.permutation(c_len)[0] |
|
pos_lists_split[i].pop(pop_id) |
|
pos_masks_split[i].pop(pop_id) |
|
label_lists_split[i].pop(pop_id) |
|
|
|
for i in range(ngpu): |
|
pos_lists_.extend(pos_lists_split[i]) |
|
pos_masks_.extend(pos_masks_split[i]) |
|
label_lists_.extend(label_lists_split[i]) |
|
return pos_lists_, pos_masks_, label_lists_ |
|
|
|
|
|
def pre_process(label_list, pos_list, pos_mask, max_text_length, max_text_nums, |
|
pad_num, tcl_bs): |
|
label_list = label_list.numpy() |
|
batch, _, _, _ = label_list.shape |
|
pos_list = pos_list.numpy() |
|
pos_mask = pos_mask.numpy() |
|
pos_list_t = [] |
|
pos_mask_t = [] |
|
label_list_t = [] |
|
for i in range(batch): |
|
for j in range(max_text_nums): |
|
if pos_mask[i, j].any(): |
|
pos_list_t.append(pos_list[i][j]) |
|
pos_mask_t.append(pos_mask[i][j]) |
|
label_list_t.append(label_list[i][j]) |
|
pos_list, pos_mask, label_list = org_tcl_rois(batch, pos_list_t, pos_mask_t, |
|
label_list_t, tcl_bs) |
|
label = [] |
|
tt = [l.tolist() for l in label_list] |
|
for i in range(tcl_bs): |
|
k = 0 |
|
for j in range(max_text_length): |
|
if tt[i][j][0] != pad_num: |
|
k += 1 |
|
else: |
|
break |
|
label.append(k) |
|
label = paddle.to_tensor(label) |
|
label = paddle.cast(label, dtype='int64') |
|
pos_list = paddle.to_tensor(pos_list) |
|
pos_mask = paddle.to_tensor(pos_mask) |
|
label_list = paddle.squeeze(paddle.to_tensor(label_list), axis=2) |
|
label_list = paddle.cast(label_list, dtype='int32') |
|
return pos_list, pos_mask, label_list, label |
|
|