File size: 9,759 Bytes
a89d9fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import subprocess

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..')))

os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

import cv2
import copy
import numpy as np
import json
import time
import logging
from PIL import Image
import tools.infer.utility as utility
import tools.infer.predict_rec as predict_rec
import tools.infer.predict_det as predict_det
import tools.infer.predict_cls as predict_cls
from ppocr.utils.utility import get_image_file_list, check_and_read
from ppocr.utils.logging import get_logger
from tools.infer.utility import draw_ocr_box_txt, get_rotate_crop_image, get_minarea_rect_crop
logger = get_logger()


class TextSystem(object):
    def __init__(self, args):
        if not args.show_log:
            logger.setLevel(logging.INFO)

        self.text_detector = predict_det.TextDetector(args)
        self.text_recognizer = predict_rec.TextRecognizer(args)
        self.use_angle_cls = args.use_angle_cls
        self.drop_score = args.drop_score
        if self.use_angle_cls:
            self.text_classifier = predict_cls.TextClassifier(args)

        self.args = args
        self.crop_image_res_index = 0

    def draw_crop_rec_res(self, output_dir, img_crop_list, rec_res):
        os.makedirs(output_dir, exist_ok=True)
        bbox_num = len(img_crop_list)
        for bno in range(bbox_num):
            cv2.imwrite(
                os.path.join(output_dir,
                             f"mg_crop_{bno+self.crop_image_res_index}.jpg"),
                img_crop_list[bno])
            logger.debug(f"{bno}, {rec_res[bno]}")
        self.crop_image_res_index += bbox_num

    def __call__(self, img, cls=True):
        time_dict = {'det': 0, 'rec': 0, 'csl': 0, 'all': 0}
        start = time.time()
        ori_im = img.copy()
        dt_boxes, elapse = self.text_detector(img)
        time_dict['det'] = elapse
        logger.debug("dt_boxes num : {}, elapse : {}".format(
            len(dt_boxes), elapse))
        if dt_boxes is None:
            return None, None
        img_crop_list = []

        dt_boxes = sorted_boxes(dt_boxes)

        for bno in range(len(dt_boxes)):
            tmp_box = copy.deepcopy(dt_boxes[bno])
            if self.args.det_box_type == "quad":
                img_crop = get_rotate_crop_image(ori_im, tmp_box)
            else:
                img_crop = get_minarea_rect_crop(ori_im, tmp_box)
            img_crop_list.append(img_crop)
        if self.use_angle_cls and cls:
            img_crop_list, angle_list, elapse = self.text_classifier(
                img_crop_list)
            time_dict['cls'] = elapse
            logger.debug("cls num  : {}, elapse : {}".format(
                len(img_crop_list), elapse))

        rec_res, elapse = self.text_recognizer(img_crop_list)
        time_dict['rec'] = elapse
        logger.debug("rec_res num  : {}, elapse : {}".format(
            len(rec_res), elapse))
        if self.args.save_crop_res:
            self.draw_crop_rec_res(self.args.crop_res_save_dir, img_crop_list,
                                   rec_res)
        filter_boxes, filter_rec_res = [], []
        for box, rec_result in zip(dt_boxes, rec_res):
            text, score = rec_result
            if score >= self.drop_score:
                filter_boxes.append(box)
                filter_rec_res.append(rec_result)
        end = time.time()
        time_dict['all'] = end - start
        return filter_boxes, filter_rec_res, time_dict


def sorted_boxes(dt_boxes):
    """
    Sort text boxes in order from top to bottom, left to right
    args:
        dt_boxes(array):detected text boxes with shape [4, 2]
    return:
        sorted boxes(array) with shape [4, 2]
    """
    num_boxes = dt_boxes.shape[0]
    sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
    _boxes = list(sorted_boxes)

    for i in range(num_boxes - 1):
        for j in range(i, -1, -1):
            if abs(_boxes[j + 1][0][1] - _boxes[j][0][1]) < 10 and \
                    (_boxes[j + 1][0][0] < _boxes[j][0][0]):
                tmp = _boxes[j]
                _boxes[j] = _boxes[j + 1]
                _boxes[j + 1] = tmp
            else:
                break
    return _boxes


def main(args):
    image_file_list = get_image_file_list(args.image_dir)
    image_file_list = image_file_list[args.process_id::args.total_process_num]
    text_sys = TextSystem(args)
    is_visualize = True
    font_path = args.vis_font_path
    drop_score = args.drop_score
    draw_img_save_dir = args.draw_img_save_dir
    os.makedirs(draw_img_save_dir, exist_ok=True)
    save_results = []

    logger.info(
        "In PP-OCRv3, rec_image_shape parameter defaults to '3, 48, 320', "
        "if you are using recognition model with PP-OCRv2 or an older version, please set --rec_image_shape='3,32,320"
    )

    # warm up 10 times
    if args.warmup:
        img = np.random.uniform(0, 255, [640, 640, 3]).astype(np.uint8)
        for i in range(10):
            res = text_sys(img)

    total_time = 0
    cpu_mem, gpu_mem, gpu_util = 0, 0, 0
    _st = time.time()
    count = 0
    for idx, image_file in enumerate(image_file_list):

        img, flag_gif, flag_pdf = check_and_read(image_file)
        if not flag_gif and not flag_pdf:
            img = cv2.imread(image_file)
        if not flag_pdf:
            if img is None:
                logger.debug("error in loading image:{}".format(image_file))
                continue
            imgs = [img]
        else:
            page_num = args.page_num
            if page_num > len(img) or page_num == 0:
                page_num = len(img)
            imgs = img[:page_num]
        for index, img in enumerate(imgs):
            starttime = time.time()
            dt_boxes, rec_res, time_dict = text_sys(img)
            elapse = time.time() - starttime
            total_time += elapse
            if len(imgs) > 1:
                logger.debug(
                    str(idx) + '_' + str(index) + "  Predict time of %s: %.3fs"
                    % (image_file, elapse))
            else:
                logger.debug(
                    str(idx) + "  Predict time of %s: %.3fs" % (image_file,
                                                                elapse))
            for text, score in rec_res:
                logger.debug("{}, {:.3f}".format(text, score))

            res = [{
                "transcription": rec_res[i][0],
                "points": np.array(dt_boxes[i]).astype(np.int32).tolist(),
            } for i in range(len(dt_boxes))]
            if len(imgs) > 1:
                save_pred = os.path.basename(image_file) + '_' + str(
                    index) + "\t" + json.dumps(
                        res, ensure_ascii=False) + "\n"
            else:
                save_pred = os.path.basename(image_file) + "\t" + json.dumps(
                    res, ensure_ascii=False) + "\n"
            save_results.append(save_pred)

            if is_visualize:
                image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
                boxes = dt_boxes
                txts = [rec_res[i][0] for i in range(len(rec_res))]
                scores = [rec_res[i][1] for i in range(len(rec_res))]

                draw_img = draw_ocr_box_txt(
                    image,
                    boxes,
                    txts,
                    scores,
                    drop_score=drop_score,
                    font_path=font_path)
                if flag_gif:
                    save_file = image_file[:-3] + "png"
                elif flag_pdf:
                    save_file = image_file.replace('.pdf',
                                                   '_' + str(index) + '.png')
                else:
                    save_file = image_file
                cv2.imwrite(
                    os.path.join(draw_img_save_dir,
                                 os.path.basename(save_file)),
                    draw_img[:, :, ::-1])
                logger.debug("The visualized image saved in {}".format(
                    os.path.join(draw_img_save_dir, os.path.basename(
                        save_file))))

    logger.info("The predict total time is {}".format(time.time() - _st))
    if args.benchmark:
        text_sys.text_detector.autolog.report()
        text_sys.text_recognizer.autolog.report()

    with open(
            os.path.join(draw_img_save_dir, "system_results.txt"),
            'w',
            encoding='utf-8') as f:
        f.writelines(save_results)


if __name__ == "__main__":
    args = utility.parse_args()
    if args.use_mp:
        p_list = []
        total_process_num = args.total_process_num
        for process_id in range(total_process_num):
            cmd = [sys.executable, "-u"] + sys.argv + [
                "--process_id={}".format(process_id),
                "--use_mp={}".format(False)
            ]
            p = subprocess.Popen(cmd, stdout=sys.stdout, stderr=sys.stdout)
            p_list.append(p)
        for p in p_list:
            p.wait()
    else:
        main(args)