File size: 2,147 Bytes
a89d9fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from tqdm import tqdm
from concurrent.futures import ProcessPoolExecutor, as_completed


def parallel_process(array, function, n_jobs=16, use_kwargs=False, front_num=0):
    """
        A parallel version of the map function with a progress bar.
        Args:
            array (array-like): An array to iterate over.
            function (function): A python function to apply to the elements of array
            n_jobs (int, default=16): The number of cores to use
            use_kwargs (boolean, default=False): Whether to consider the elements of array as dictionaries of
                keyword arguments to function
            front_num (int, default=3): The number of iterations to run serially before kicking off the parallel job.
                Useful for catching bugs
        Returns:
            [function(array[0]), function(array[1]), ...]
    """
    # We run the first few iterations serially to catch bugs
    if front_num > 0:
        front = [function(**a) if use_kwargs else function(a)
                 for a in array[:front_num]]
    else:
        front = []
    # If we set n_jobs to 1, just run a list comprehension. This is useful for benchmarking and debugging.
    if n_jobs == 1:
        return front + [function(**a) if use_kwargs else function(a) for a in tqdm(array[front_num:])]
    # Assemble the workers
    with ProcessPoolExecutor(max_workers=n_jobs) as pool:
        # Pass the elements of array into function
        if use_kwargs:
            futures = [pool.submit(function, **a) for a in array[front_num:]]
        else:
            futures = [pool.submit(function, a) for a in array[front_num:]]
        kwargs = {
            'total': len(futures),
            'unit': 'it',
            'unit_scale': True,
            'leave': True
        }
        # Print out the progress as tasks complete
        for f in tqdm(as_completed(futures), **kwargs):
            pass
    out = []
    # Get the results from the futures.
    for i, future in tqdm(enumerate(futures)):
        try:
            out.append(future.result())
        except Exception as e:
            out.append(e)
    return front + out