File size: 1,542 Bytes
a89d9fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import paddle

__all__ = ['KIEMetric']


class VQASerTokenMetric(object):
    def __init__(self, main_indicator='hmean', **kwargs):
        self.main_indicator = main_indicator
        self.reset()

    def __call__(self, preds, batch, **kwargs):
        preds, labels = preds
        self.pred_list.extend(preds)
        self.gt_list.extend(labels)

    def get_metric(self):
        from seqeval.metrics import f1_score, precision_score, recall_score
        metrics = {
            "precision": precision_score(self.gt_list, self.pred_list),
            "recall": recall_score(self.gt_list, self.pred_list),
            "hmean": f1_score(self.gt_list, self.pred_list),
        }
        self.reset()
        return metrics

    def reset(self):
        self.pred_list = []
        self.gt_list = []