RxnIM / rxn /reaction /pix2seq /attention_layer.py
CYF200127's picture
Upload 116 files
5e9bd47 verified
import torch
import torch.nn as nn
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, dropout=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3)
self.attn_drop = nn.Dropout(dropout)
self.proj = nn.Linear(dim, dim)
def forward(self, x, pre_kv=None, attn_mask=None):
N, B, C = x.shape
qkv = self.qkv(x).reshape(N, B, 3, self.num_heads, C // self.num_heads).permute(2, 1, 3, 0, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
if not self.training:
k = torch.cat([pre_kv[0], k], dim=2)
v = torch.cat([pre_kv[1], v], dim=2)
pre_kv = torch.stack([k, v], dim=0)
attn = (q @ k.transpose(-2, -1)) * self.scale
if attn_mask is not None:
attn.masked_fill_(attn_mask, float('-inf'))
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).permute(2, 0, 1, 3).reshape(N, B, C)
x = self.proj(x)
return x, pre_kv