RxnIM / mllm /demo /webdemo_re.py
CYF200127's picture
Upload 235 files
3e1d9f3 verified
raw
history blame
35.1 kB
import os
import sys
import logging
import time
import argparse
import tempfile
from pathlib import Path
from typing import List, Any, Union
import torch
import numpy as np
import gradio as gr
from PIL import Image
from PIL import ImageDraw, ImageFont
from mmengine import Config
import transformers
from transformers import BitsAndBytesConfig
sys.path.append(str(Path(__file__).parent.parent.parent))
from mllm.dataset.process_function import PlainBoxFormatter
from mllm.dataset.builder import prepare_interactive
from mllm.utils import draw_bounding_boxes
from mllm.models.builder.build_shikra import load_pretrained_shikra
log_level = logging.DEBUG
transformers.logging.set_verbosity(log_level)
transformers.logging.enable_default_handler()
transformers.logging.enable_explicit_format()
TEMP_FILE_DIR = Path(__file__).parent / 'temp'
TEMP_FILE_DIR.mkdir(parents=True, exist_ok=True)
#########################################
# mllm model init
#########################################
parser = argparse.ArgumentParser("Shikra Web Demo")
parser.add_argument('--model_path', required=True)
parser.add_argument('--load_in_8bit', action='store_true')
parser.add_argument('--server_name', default=None)
parser.add_argument('--server_port', type=int, default=None)
args = parser.parse_args()
print(args)
model_name_or_path = args.model_path
model_args = Config(dict(
type='shikra',
version='v1',
# checkpoint config
cache_dir=None,
model_name_or_path=model_name_or_path,
#vision_tower=r'openai/clip-vit-large-patch14',
vision_tower=r'SenseTime/deformable-detr',
pretrain_mm_mlp_adapter=None,
# model config
mm_vision_select_layer=-2,
model_max_length=2048,
# finetune config
freeze_backbone=False,
tune_mm_mlp_adapter=False,
freeze_mm_mlp_adapter=False,
# data process config
is_multimodal=True,
sep_image_conv_front=False,
image_token_len=300,
mm_use_im_start_end=True,
target_processor=dict(
boxes=dict(type='PlainBoxFormatter'),
),
process_func_args=dict(
conv=dict(type='ShikraConvProcess'),
target=dict(type='BoxFormatProcess'),
text=dict(type='ShikraTextProcess'),
image=dict(type='ShikraImageProcessor'),
),
conv_args=dict(
conv_template='vicuna_v1.1',
transforms=dict(type='Expand2square'),
tokenize_kwargs=dict(truncation_size=None),
),
gen_kwargs_set_pad_token_id=True,
gen_kwargs_set_bos_token_id=True,
gen_kwargs_set_eos_token_id=True,
))
training_args = Config(dict(
bf16=False,
fp16=True,
device='cuda',
fsdp=None,
))
if args.load_in_8bit:
quantization_kwargs = dict(
quantization_config=BitsAndBytesConfig(
load_in_8bit=True,
)
)
else:
quantization_kwargs = dict()
model, preprocessor = load_pretrained_shikra(model_args, training_args, **quantization_kwargs)
if not getattr(model, 'is_quantized', False):
model.to(dtype=torch.float16, device=torch.device('cuda'))
if not getattr(model.model.vision_tower[0], 'is_quantized', False):
model.model.vision_tower[0].to(dtype=torch.float16, device=torch.device('cuda'))
print(f"LLM device: {model.device}, is_quantized: {getattr(model, 'is_quantized', False)}, is_loaded_in_4bit: {getattr(model, 'is_loaded_in_4bit', False)}, is_loaded_in_8bit: {getattr(model, 'is_loaded_in_8bit', False)}")
print(f"vision device: {model.model.vision_tower[0].device}, is_quantized: {getattr(model.model.vision_tower[0], 'is_quantized', False)}, is_loaded_in_4bit: {getattr(model, 'is_loaded_in_4bit', False)}, is_loaded_in_8bit: {getattr(model, 'is_loaded_in_8bit', False)}")
preprocessor['target'] = {'boxes': PlainBoxFormatter()}
tokenizer = preprocessor['text']
#########################################
# demo utils
#########################################
def parse_text(text):
text = text.replace("<image>", "&lt;image&gt;")
return text
def setup_gradio_warning(level=1):
"""
level 0 1 2 3
level IGNORE Weak Strong Error
has Warning _foo Warning Warning Error
no Warning _foo _foo Error Error
"""
def _dummy_func(*args, **kwargs):
pass
def _raise_error(*args, **kwargs):
raise gr.Error(*args, **kwargs)
assert level in [0, 1, 2, 3]
if level >= 3:
return _raise_error
if level <= 0:
return _dummy_func
if hasattr(gr, 'Warning'):
return gr.Warning
if level == 1:
return _dummy_func
return _raise_error
grWarning = setup_gradio_warning()
def de_norm_box_xyxy(box, *, w, h):
x1, y1, x2, y2 = box
x1 = x1 * w
x2 = x2 * w
y1 = y1 * h
y2 = y2 * h
box = x1, y1, x2, y2
return box
def expand2square(pil_img, background_color=(255, 255, 255)):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
def box_xyxy_expand2square(box, *, w, h):
if w == h:
return box
if w > h:
x1, y1, x2, y2 = box
y1 += (w - h) // 2
y2 += (w - h) // 2
box = x1, y1, x2, y2
return box
assert w < h
x1, y1, x2, y2 = box
x1 += (h - w) // 2
x2 += (h - w) // 2
box = x1, y1, x2, y2
return box
def resize_pil_img(pil_img: Image.Image, *, w, h):
old_height, old_width = pil_img.height, pil_img.width
new_height, new_width = (h, w)
if (new_height, new_width) == (old_height, old_width):
return pil_img
return pil_img.resize((new_width, new_height))
def resize_box_xyxy(boxes, *, w, h, ow, oh):
old_height, old_width = (oh, ow)
new_height, new_width = (h, w)
if (new_height, new_width) == (old_height, old_width):
return boxes
w_ratio = new_width / old_width
h_ratio = new_height / old_height
out_boxes = []
for box in boxes:
x1, y1, x2, y2 = box
x1 = x1 * w_ratio
x2 = x2 * w_ratio
y1 = y1 * h_ratio
y2 = y2 * h_ratio
nb = (x1, y1, x2, y2)
out_boxes.append(nb)
return out_boxes
# use mask to simulate box
# copy from https://github.com/gligen/GLIGEN/blob/master/demo/app.py
class ImageMask(gr.components.Image):
is_template = True
def __init__(self, **kwargs):
super().__init__(source="upload", tool="sketch", interactive=True, **kwargs)
#super().__init__(tool = "sketch", interactive=True, **kwargs)
def binarize(x):
return (x != 0).astype('uint8') * 255
class ImageBoxState:
def __init__(self, draw_size: Union[int, float, tuple, list] = 512):
if isinstance(draw_size, (float, int)):
draw_size = (draw_size, draw_size)
assert len(draw_size) == 2
self.size = draw_size
self.height, self.width = self.size[0], self.size[1]
self.reset_state()
# noinspection PyAttributeOutsideInit
def reset_state(self):
self.image = None
self.boxes = []
self.masks = []
# noinspection PyAttributeOutsideInit
def reset_masks(self):
self.boxes = []
self.masks = []
# noinspection PyAttributeOutsideInit
def update_image(self, image):
if image != self.image:
self.reset_state()
self.image = image
def update_mask(self, mask):
if len(self.masks) == 0:
last_mask = np.zeros_like(mask)
else:
last_mask = self.masks[-1]
if type(mask) == np.ndarray and mask.size > 1:
diff_mask = mask - last_mask
else:
diff_mask = np.zeros([])
if diff_mask.sum() > 0:
# noinspection PyArgumentList
x1x2 = np.where(diff_mask.max(0) != 0)[0]
# noinspection PyArgumentList
y1y2 = np.where(diff_mask.max(1) != 0)[0]
y1, y2 = y1y2.min(), y1y2.max()
x1, x2 = x1x2.min(), x1x2.max()
if (x2 - x1 > 5) and (y2 - y1 > 5):
self.masks.append(mask.copy())
self.boxes.append(tuple(map(int, (x1, y1, x2, y2))))
def update_box(self, box):
x1, y1, x2, y2 = box
x1, x2 = min(x1, x2), max(x1, x2)
y1, y2 = min(y1, y2), max(y1, y2)
self.boxes.append(tuple(map(int, (x1, y1, x2, y2))))
def to_model(self):
if self.image is None:
return {}
image = expand2square(self.image)
boxes = [box_xyxy_expand2square(box, w=self.image.width, h=self.image.height) for box in self.boxes]
return {'image': image, 'boxes': boxes}
def draw_boxes(self):
assert self.image is not None
grounding_texts = [f'{bid}' for bid in range(len(self.boxes))]
image = expand2square(self.image)
boxes = [box_xyxy_expand2square(box, w=self.image.width, h=self.image.height) for box in self.boxes]
image_to_draw = resize_pil_img(image, w=self.width, h=self.height)
boxes_to_draw = resize_box_xyxy(boxes, w=self.width, h=self.height, ow=image.width, oh=image.height)
def _draw(img, _boxes: List[Any], texts: List[str]):
assert img is not None
colors = ["red", "blue", "green", "olive", "orange", "brown", "cyan", "purple"]
_img_draw = ImageDraw.Draw(img)
font = ImageFont.truetype(os.path.join(os.path.dirname(__file__), 'assets/DejaVuSansMono.ttf'), size=18)
for bid, box in enumerate(_boxes):
_img_draw.rectangle((box[0], box[1], box[2], box[3]), outline=colors[bid % len(colors)], width=4)
anno_text = texts[bid]
_img_draw.rectangle((box[0], box[3] - int(font.size * 1.2), box[0] + int((len(anno_text) + 0.8) * font.size * 0.6), box[3]),
outline=colors[bid % len(colors)], fill=colors[bid % len(colors)], width=4)
_img_draw.text((box[0] + int(font.size * 0.2), box[3] - int(font.size * 1.2)), anno_text, font=font, fill=(255, 255, 255))
return img
out_draw = _draw(image_to_draw, boxes_to_draw, grounding_texts)
return out_draw
def add_submit_temp_image(state, temp_image_path):
if '_submit_temp_images' not in state:
state['_submit_temp_images'] = []
state['_submit_temp_images'].append(temp_image_path)
return state
def clear_submit_temp_image(state):
if '_submit_temp_images' in state:
for path in state['_submit_temp_images']:
os.remove(path)
del state['_submit_temp_images']
return state
if __name__ == '__main__':
with gr.Blocks() as demo:
logo_file_url = f"file={os.path.join(os.path.dirname(__file__), 'assets/relogo.png')}"
gr.HTML(
f"""
<p align="center"><img src="{logo_file_url}" alt="Logo" width="530"></p>
<h1 align="center"><font color="#966661">ChemRxnGPT</font>: A Multimodal LLM for Chemical Reaction Image Analysis </h1>
<p align="center">
<a href='https://github.com/shikras/shikra' target='_blank'>[Project]</a>
<a href='http://arxiv.org/abs/2306.15195' target='_blank'>[Paper]</a>
</p>
<p>
<font color="#966661"><strong>ChemRxnGPT</strong></font>, an MLLM designed for <strong>Chemical Reaction Image Analysis</strong> by excelling in chemical reaction pattern and spatial coordinate reaction object in natural language, <strong>without</strong> additional vocabularies, position encoders, pre-/post-detection, or external plug-in models.
</p>
<h2>User Manual</h2>
<ul>
<li><p><strong>Step 1.</strong> Upload an chemical reaction image</p>
</li>
<li><p><strong>Step 2.</strong> Select Question Format in <code>Task Template</code>. Task template and user input (if exists) will be assembled into final inputs to the model.</p>
<ul>
<li><strong>Task 1, Chemical Reaction Extraction Task</strong>: Ask the model to generate a <strong>complete and detailed reaction list</strong>.</li>
<li><strong>Task 2, Detailed Condition VQA and OCR Task</strong>: Ask the model to provide a <strong>detailed condition information</strong> in a condition area.</li>
</ul>
</li>
<li><p><strong>Step 3.</strong> Ask Question. Use &lt;boxes&gt; placeholder if input has bounding box.</p>
</li>
</ul>
<p>The following step are needed <strong>only</strong> for Detailed condition VQA and OCR task which input has bounding box.</p>
<ul>
<li><p><strong>Step 4.</strong> Draw Bounding Box in <code>Sketch Pad</code>.</p>
<p>Each bbox has a unique index, which will show at the corner of the bbox in <code>Parsed Sketch Pad</code>. </p>
</li>
<li><p><strong>Step 5.</strong> Assign the bbox index in <code>Boexs Seq</code> for each &lt;boxes&gt; placeholder. <code>Boexs Seq</code> <strong>take a 2-d list as input, each sub-list will replace the &lt;boxes&gt; placeholder in order.</strong></p>
</li>
</ul>
"""
)
with gr.Row():
with gr.Column():
gr.HTML(
"""
<h2>Video example 1</h2>
<p>a video example demonstrate how to use the demo for Task 1.</p>
"""
)
video_file_url = os.path.join(os.path.dirname(__file__), f"assets/petal_20230711_153216_Compressed.mp4")
gr.Video(value=video_file_url, interactive=False, width=550)
with gr.Column():
gr.HTML(
"""
<h2>Video example 2</h2>
<p>a video example demonstrate how to use the demo for Task 2.</p>
"""
)
video_file_url = os.path.join(os.path.dirname(__file__), f"assets/petal_20230711_153216_Compressed.mp4")
gr.Video(value=video_file_url, interactive=False, width=550)
gr.HTML(
"""
<h2>Demo</h2>
"""
)
with gr.Row():
with gr.Column():
chatbot = gr.Chatbot()
with gr.Accordion("Parameters", open=False):
with gr.Row():
do_sample = gr.Checkbox(value=False, label='do sampling', interactive=True)
max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="max length", interactive=True)
top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top P", interactive=True)
temperature = gr.Slider(0, 10, value=0.75, step=0.01, label="Temperature", interactive=True)
with gr.Column():
with gr.Row(variant='compact'):
sketch_pad = ImageMask(label="Sketch Pad", elem_id="img2img_image")
out_imagebox = gr.Image(label="Parsed Sketch Pad")
with gr.Column():
radio = gr.Radio(
["Task_1", "Task_2"], label="Task Template", value='Task_1',
)
with gr.Group():
template = gr.Textbox(label='Template', show_label=True, lines=1, interactive=False,
value= 'Please list every Reactions in this image <image> in detail, including the category of every objects with a unique ID and coordinates[x1,y1,x2,y2]. And their Reaction role in a reaction. The category include Structure and Text. The Reaction role include Reactants, Conditions and Products. And notice that Reactants and Products are usually linked by arrows.')
user_input = gr.Textbox(label='<question>', show_label=True, placeholder="Input...", lines=3,
value=None, visible=False, interactive=False)
boxes_seq = gr.Textbox(label='Boxes Seq', show_label=False, placeholder="Boxes Seq...", lines=1,
value=None, visible=False, interactive=False)
with gr.Row():
reset_all = gr.Button('Reset All')
reset_chat = gr.Button('Reset Chat')
reset_boxes = gr.Button('Reset Boxes')
submitBtn = gr.Button('Run')
##############################################
# reset state
##############################################
def reset_state_func():
ret = {
'ibs': ImageBoxState(),
'ds': prepare_interactive(model_args, preprocessor),
}
return ret
state = gr.State(reset_state_func)
example_image_boxes = gr.State(None)
##############################################
# reset dialogue
##############################################
def reset_all_func(state):
# clear_submit_temp_image(state)
new_state = reset_state_func()
boxes_seq = '[[0]]' if radio in ['Task_2', 'GC'] else None
return [new_state, None, None, None, boxes_seq, None]
reset_all.click(
fn=reset_all_func,
inputs=[state],
outputs=[state, sketch_pad, out_imagebox, user_input, boxes_seq, chatbot],
)
def reset_chat_func_step1(state, radio):
state['ibs'].reset_masks()
new_state = reset_state_func()
new_state['_reset_boxes_func_image'] = state['ibs'].image
boxes_seq = '[[0]]' if radio in ['Task_2', 'GC'] else None
return [new_state, None, None, None, boxes_seq, None]
def reset_chat_func_step2(state):
image = state['_reset_boxes_func_image']
del state['_reset_boxes_func_image']
return state, gr.update(value=image)
reset_chat.click(
fn=reset_chat_func_step1,
inputs=[state, radio],
outputs=[state, sketch_pad, out_imagebox, user_input, boxes_seq, chatbot],
).then(
fn=reset_chat_func_step2,
inputs=[state],
outputs=[state, sketch_pad],
)
##############################################
# reset boxes
##############################################
def reset_boxes_func_step1(state):
state['_reset_boxes_func_image'] = state['ibs'].image
state['ibs'].reset_masks()
return state, None
def reset_boxes_func_step2(state):
image = state['_reset_boxes_func_image']
del state['_reset_boxes_func_image']
return state, gr.update(value=image)
# reset boxes
reset_boxes.click(
fn=reset_boxes_func_step1,
inputs=[state],
outputs=[state, sketch_pad],
).then(
fn=reset_boxes_func_step2,
inputs=[state],
outputs=[state, sketch_pad],
)
##############################################
# examples
##############################################
def parese_example(image, boxes):
state = reset_state_func()
image = Image.open(image)
state['ibs'].update_image(image)
for box in boxes:
state['ibs'].update_box(box)
image = state['ibs'].draw_boxes()
_, path = tempfile.mkstemp(suffix='.jpg', dir=TEMP_FILE_DIR)
image.save(path)
return path, state
with gr.Column(visible=True) as example_Task_1:
_examples_cap_raw = [
os.path.join(os.path.dirname(__file__), 'assets/reaction1.png'),
os.path.join(os.path.dirname(__file__), 'assets/reaction2.png'),
]
_examples_cap_parsed = [[item, []] for item in _examples_cap_raw]
gr.Examples(
examples=_examples_cap_parsed,
inputs=[sketch_pad, example_image_boxes],
)
with gr.Column(visible=True) as example_Task_2:
gr.Examples(
examples=[
[
os.path.join(os.path.dirname(__file__), "assets/reaction3.png"),
"[[0]]",
[[654.0, 239.0, 871.0, 285.0]],
]
],
inputs=[sketch_pad, boxes_seq, example_image_boxes],
)
##############################################
# task template select
##############################################
def change_textbox(choice):
task_template = {
#"Task_1": "Please list every Reactions in this image <image> in detail, including the category of every objects with a unique ID and coordinates[x1,y1,x2,y2]. And their Reaction role in a reaction. The category include Structure and Text. The Reaction role include Reactants, Conditions and Products. And notice that Reactants and Products are usually linked by arrows.",
"Task_1": "Please list every reaction in this image <image> in detail. For each reaction, include the category and unique ID of each object, along with their coordinates [x1, y1, x2, y2]. Categories include Structure (<Str>) and Text (<Txt>). Describe their roles in each reaction(<Rxn/st> to <Rxn/ed>), including Reactants (<Rct/st> to <Rct/ed>), Conditions (<Cnd/st> to <Cnd/ed>), and Products (<Prd/st> to <Prd/ed>). Note that Reactants and Products must include at least one object, while Conditions can be specified without any objects. Each reaction should be listed in the following structured output format: <Rxn/st><Rct/st>(object 1)...<Rct/ed><Cnd/st>(object 2)...<Cnd/ed><Prd/st>(object 3)...<Prd/ed><Rxn/ed>,<Rxn/st>.... Only the Conditions section can be empty(<Cnd/st><Cnd/ed> without anything between).",
"Task_2": "what is written in this Text<boxes>, And please indicate their roles in solvent, temperature, time, agent and yield ",
}
if choice in ['Advanced']:
template_update = gr.update(value=task_template[choice], visible=False)
else:
template_update = gr.update(value=task_template[choice], visible=True)
if choice in ['Task_1']:
input_update = gr.update(value=None, visible=False, interactive=False)
boxes_seq_update = gr.update(show_label=False, value=None, visible=False, interactive=False)
elif choice in ['Task_2']:
input_update = gr.update(value=None, visible=False, interactive=False)
boxes_seq_update = gr.update(show_label=True, value='[[0]]', visible=True, interactive=True)
else:
raise gr.Error("What is this?!")
ret = [
template_update,
input_update,
boxes_seq_update,
gr.update(visible=True) if choice in ['Task_1'] else gr.update(visible=False),
gr.update(visible=True) if choice in ['Task_2'] else gr.update(visible=False),
]
return ret
radio.change(
fn=change_textbox,
inputs=radio,
outputs=[template, user_input, boxes_seq, example_Task_1, example_Task_2],
)
##############################################
# draw
##############################################
def draw(sketch_pad: dict, state: dict, example_image_boxes):
if example_image_boxes is None:
image = sketch_pad['image']
image = Image.fromarray(image)
mask = sketch_pad['mask'][..., 0] if sketch_pad['mask'].ndim == 3 else sketch_pad['mask']
mask = binarize(mask)
ibs: ImageBoxState = state['ibs']
ibs.update_image(image)
ibs.update_mask(mask)
out_draw = ibs.draw_boxes()
ret = [out_draw, state, None, gr.update()]
return ret
else:
image = sketch_pad['image']
image = Image.fromarray(image)
state = reset_state_func()
ibs: ImageBoxState = state['ibs']
ibs.update_image(image)
for box in example_image_boxes:
ibs.update_box(box)
out_draw = ibs.draw_boxes()
ret = [out_draw, state, None, []]
return ret
sketch_pad.edit(
fn=draw,
inputs=[sketch_pad, state, example_image_boxes],
outputs=[out_imagebox, state, example_image_boxes, chatbot],
queue=False,
)
##############################################
# submit boxes
##############################################
def submit_step1(state, template, raw_user_input, boxes_seq, chatbot, do_sample, max_length, top_p, temperature):
if '<expr>' in template or '<question>' in template:
if not bool(raw_user_input):
raise gr.Error("say sth bro.")
if '<expr>' in template:
user_input = template.replace("<expr>", raw_user_input)
elif '<question>' in template:
user_input = template.replace("<question>", raw_user_input)
else:
user_input = template
def parse_boxes_seq(boxes_seq_str) -> List[List[int]]:
if not bool(boxes_seq_str):
return []
import ast
# validate
try:
parsed = ast.literal_eval(boxes_seq_str)
assert isinstance(parsed, (tuple, list)), \
f"boxes_seq should be a tuple/list but got {type(parsed)}"
for elem in parsed:
assert isinstance(elem, (tuple, list)), \
f"the elem in boxes_seq should be a tuple/list but got {type(elem)} for elem: {elem}"
assert len(elem) != 0, \
f"the elem in boxes_seq should not be empty."
for atom in elem:
assert isinstance(atom, int), \
f"the boxes_seq atom should be a int idx but got {type(atom)} for atom: {atom}"
except (AssertionError, SyntaxError) as e:
raise gr.Error(f"error when parse boxes_seq_str: {str(e)} for input: {boxes_seq_str}")
return parsed
boxes_seq = parse_boxes_seq(boxes_seq)
mm_state = state['ibs'].to_model()
ds = state['ds']
print(mm_state)
if 'image' in mm_state and bool(mm_state['image']):
# multimodal mode
if ds.image is not None and ds.image != mm_state['image']:
raise gr.Error("ChemRxnGPT only support single image conversation but got different images. maybe u want `Reset All`")
if ds.image != mm_state['image']:
ds.set_image(mm_state['image'])
def validate_message_box(user_input: str, boxes_seq: list, boxes_value: list):
if boxes_value and (not boxes_seq):
grWarning("has box drawn but set no boxes_seq")
if boxes_seq and (not boxes_value):
grWarning("ignored boxes_seq because no box drawn.")
boxes_placeholder_num = str(user_input).count('<boxes>')
if boxes_placeholder_num != len(boxes_seq):
raise gr.Error(f"<boxes> and boxes_seq num not match: {boxes_placeholder_num} {len(boxes_seq)}")
for boxes in boxes_seq:
for bidx in boxes:
if not (0 <= bidx < len(boxes_value)):
raise gr.Error(f"boxes_seq out of range: {boxes_seq} {len(boxes_value)}")
try:
validate_message_box(user_input, boxes_seq, mm_state['boxes'])
ds.append_message(role=ds.roles[0], message=user_input, boxes=mm_state['boxes'], boxes_seq=boxes_seq)
except Exception as e:
raise gr.Error(f"error when append message: {str(e)}")
else:
# text-only mode
if bool(boxes_seq):
grWarning("ignored boxes_seq in text-only mode")
boxes_placeholder_num = str(user_input).count('<boxes>')
if boxes_placeholder_num:
gr.Error("use <boxes> in input but no image found.")
ds.append_message(role=ds.roles[0], message=user_input)
model_inputs = ds.to_model_input()
model_inputs['images'] = model_inputs['images'].to(torch.float16)
print(f"model_inputs: {model_inputs}")
if do_sample:
gen_kwargs = dict(
use_cache=True,
do_sample=do_sample,
pad_token_id=tokenizer.pad_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=max_length,
top_p=top_p,
temperature=float(temperature),
)
else:
gen_kwargs = dict(
use_cache=True,
do_sample=do_sample,
pad_token_id=tokenizer.pad_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=max_length,
)
print(gen_kwargs)
input_ids = model_inputs['input_ids']
st_time = time.time()
with torch.inference_mode():
with torch.autocast(dtype=torch.float16, device_type='cuda'):
output_ids = model.generate(**model_inputs, **gen_kwargs)
print(f"done generated in {time.time() - st_time} seconds")
input_token_len = input_ids.shape[-1]
response = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
print(f"response: {response}")
# update new message
def build_boxes_image(text, image):
if image is None:
return text, None
print(text, image)
import re
colors = ['#ed7d31', '#5b9bd5', '#70ad47', '#7030a0', '#c00000', '#ffff00', "olive", "brown", "cyan",'#003366', '#b76e79', '#008080', '#8e44ad', '#ff6b6b','#dcd0ff', '#b7410e', '#bfff00', '#87ceeb', '#f1c40f']
pat = re.compile(r'\[\d(?:\.\d*)?(?:,\d(?:\.\d*)?){3}(?:;\d(?:\.\d*)?(?:,\d(?:\.\d*)?){3})*\]')
def extract_boxes(string):
ret = []
for bboxes_str in pat.findall(string):
bboxes = []
bbox_strs = bboxes_str.replace("(", "").replace(")", "").replace("[", "").replace("]", "").split(";")
for bbox_str in bbox_strs:
bbox = list(map(float, bbox_str.split(',')))
bboxes.append(bbox)
ret.append(bboxes)
return ret
extract_pred = extract_boxes(text)
boxes_to_draw = []
color_to_draw = []
for idx, boxes in enumerate(extract_pred):
color = colors[idx % len(colors)]
for box in boxes:
boxes_to_draw.append(de_norm_box_xyxy(box, w=image.width, h=image.height))
color_to_draw.append(color)
if not boxes_to_draw:
return text, None
res = draw_bounding_boxes(image=image, boxes=boxes_to_draw, colors=color_to_draw, width=8)
from torchvision.transforms import ToPILImage
res = ToPILImage()(res)
_, path = tempfile.mkstemp(suffix='.jpg', dir=TEMP_FILE_DIR)
res.save(path)
add_submit_temp_image(state, path)
# post process text color
print(text)
location_text = text
edit_text = list(text)
bboxes_str = pat.findall(text)
for idx in range(len(bboxes_str) - 1, -1, -1):
color = colors[idx % len(colors)]
boxes = bboxes_str[idx]
span = location_text.rfind(boxes), location_text.rfind(boxes) + len(boxes)
location_text = location_text[:span[0]]
edit_text[span[0]:span[1]] = f'<span style="color:{color}; font-weight:bold;">{boxes}</span>'
text = "".join(edit_text)
return text, path
def convert_one_round_message(conv, image=None):
text_query = f"{conv[0][0]}: {conv[0][1]}"
text_answer = f"{conv[1][0]}: {conv[1][1]}"
text_query, image_query = build_boxes_image(text_query, image)
text_answer, image_answer = build_boxes_image(text_answer, image)
new_chat = []
new_chat.append([parse_text(text_query), None])
if image_query is not None:
new_chat.append([(image_query,), None])
new_chat.append([None, parse_text(text_answer)])
if image_answer is not None:
new_chat.append([None, (image_answer,)])
return new_chat
ds.append_message(role=ds.roles[1], message=response)
conv = ds.to_gradio_chatbot_new_messages()
new_message = convert_one_round_message(conv, image=mm_state.get('image', None))
print(new_message)
state['_submit_new_message'] = new_message
return state, chatbot
def submit_step2(state, user_input, boxes_seq, chatbot):
if '_submit_new_message' in state:
chatbot.extend(state['_submit_new_message'])
del state['_submit_new_message']
return state, None, None, chatbot
return state, user_input, boxes_seq, chatbot
submitBtn.click(
submit_step1,
[state, template, user_input, boxes_seq, chatbot, do_sample, max_length, top_p, temperature],
[state, chatbot],
).then(
submit_step2,
[state, user_input, boxes_seq, chatbot],
[state, user_input, boxes_seq, chatbot],
)
print("launching...")
demo.queue().launch(server_name=args.server_name, server_port=args.server_port)