RxnIM / mllm /dataset /single_image_convsation.py
CYF200127's picture
Upload 235 files
3e1d9f3 verified
raw
history blame
12.4 kB
import warnings
from functools import partial
from typing import Dict, Any, Callable, List, Optional, Tuple, Type
import torch
from PIL import Image
from torch.utils.data import Dataset
from transformers import TrainingArguments
from .root import IMAGE_PLACEHOLDER, BOXES_PLACEHOLDER
from ..conversation import Conversation, get_conv_template
from ..utils import post_process_generate_ids
class SingleImageConvDatasetMixin:
def __init__(
self,
*args,
preprocessor: Dict[str, Any],
process_func: Dict[str, Any],
conv_template: Callable[[], Conversation] = partial(get_conv_template, name='vicuna_v1.1'),
mode='train',
tokenize_kwargs: dict = None,
training_args: TrainingArguments = None,
transforms: Optional[Callable] = None,
**kwargs,
):
super().__init__(*args, **kwargs)
assert mode in ['train', 'validation', 'test']
self.preprocessor = preprocessor
self.process_func = process_func
self.conv_template = conv_template
self.mode = mode
self.tokenize_kwargs = tokenize_kwargs if tokenize_kwargs is not None else {}
self.training_args = training_args
self.transforms = transforms
def __getitem__(self, index, debug_mode=False, return_conv=False) -> Dict[str, Any]:
# getitem
item = self.get_raw_item(index)
image: Image.Image = item.get('image', None)
target: Dict[str, Any] = item.get('target', None)
raw_conv: List[Dict[str, Any]] = item['conversations']
# transform
assert isinstance(image, list) == isinstance(target, list)
multimage_mode = isinstance(image, list)
if isinstance(image, list):
# TODO: validate raw item
transformed_image, transformed_target = [], []
for img, tgt in zip(image, target):
if self.transforms is not None and image is not None:
img, tgt = self.transforms(img, tgt)
if tgt is not None:
tgt['width'], tgt['height'] = img.width, img.height
transformed_image.append(img)
transformed_target.append(tgt)
image, target = transformed_image, transformed_target
else:
self.validate_raw_item(item) # only validate for single image.
if self.transforms is not None and image is not None:
image, target = self.transforms(image, target)
has_image = 'image' in item and bool(item['image'])
has_target = 'target' in item and bool(item['target']) and any(bool(elem) for elem in item['target'].values())
if has_target and has_image:
target['width'], target['height'] = image.width, image.height
# preprocess
raw_conv = self.process_conv(raw_conv)
raw_conv, image = self.process_conv_multimage(raw_conv, image)
raw_conv, _ = self.process_target(raw_conv, target, multimage_mode=multimage_mode)
conv = self.build_conv(raw_conv)
if return_conv:
# noinspection PyTypeChecker
return conv
text_dict = self.process_text(conv)
image_dict = self.process_image(image)
# return
ret_dict = {}
ret_dict.update(text_dict)
ret_dict.update(image_dict)
self._print_sample(ret_dict, raw_conv, conv)
if debug_mode:
return {'ret': ret_dict, 'raw_conv': raw_conv, 'conv': conv, 'image': image}
return ret_dict
def __len__(self):
raise NotImplementedError
# noinspection PyMethodMayBeStatic
def process_conv_multimage(self, raw_conv, image):
# re-sort multi image
if image is None:
return raw_conv, image
if not isinstance(image, (list, tuple)):
return raw_conv, image
image_seqs = []
for conv in raw_conv:
image_seqs.extend(conv['image_seq'] if 'image_seq' in conv else [])
images = []
for idx in image_seqs:
images.append(image[idx])
return raw_conv, images
def get_raw_item(self, index) -> Dict[str, Any]:
"""
return item format like this.
item = {
'image': # PIL.Image.Image,
'target': {
# xmin, ymin, xmax, ymax
'boxes': [
[10, 10, 256, 265], # dog1
[24, 18, 378, 768], # dog2
[100, 310, 670, 653], # man
[278, 320, 809, 673], # rope
],
}
"conversations": [
{
'from': 'human',
'value': 'What is the relation between the two dogs <boxes> and the man <boxes> in the image <image> ?',
'boxes_seq': [[0, 1], [2], ],
},
{
'from': 'gpt',
'value': 'a rope <boxes> is connecting the left dog <boxes> with the man <boxes>. '
'So the man <boxes> is walking the dog <boxes>.'
'And the man <boxes> has no relationship with the right dog <boxes>',
'boxes_seq': [[3], [0], [2], [2], [0], [2], [1]],
}
]
}
# placeholder: <image> <boxes>
"""
raise NotImplementedError
# noinspection PyMethodMayBeStatic
def validate_raw_item(self, item):
has_image = 'image' in item and bool(item['image'])
has_target = 'target' in item and bool(item['target']) and any(bool(elem) for elem in item['target'].values())
has_target_boxes = 'boxes' in item['target'] if has_target else False
raw_conv: List[Dict[str, Any]] = item['conversations']
# check image
human_input_has_image_placeholder = any(
sentence['from'] == 'human' and IMAGE_PLACEHOLDER in sentence['value'] for sentence in raw_conv
)
if human_input_has_image_placeholder:
assert has_image
if has_image and (not human_input_has_image_placeholder):
warnings.warn(f'item has image but the question has no image placeholder.\n{item}')
gpt_input_has_image_placeholder = any(
sentence['from'] == 'gpt' and IMAGE_PLACEHOLDER in sentence['value'] for sentence in raw_conv
)
assert not gpt_input_has_image_placeholder
# check target
has_boxes_placeholder = any(
BOXES_PLACEHOLDER in sentence['value'] for sentence in raw_conv
)
if has_boxes_placeholder:
assert has_target_boxes
# not check box placeholder num this will be checked in format process
def build_conv(self, source: List[Dict[str, Any]]) -> Conversation:
conv = self.conv_template()
role_map = {"human": conv.roles[0], "gpt": conv.roles[1]}
assert len(source) > 0
assert source[0]['from'] == 'human'
for sentence in source:
role = role_map[sentence['from']]
conv.append_message(role, sentence['value'])
return conv
def process_conv(self, raw_conv: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""
some utils preprocess for raw_conv.
e.g. replace <image> placeholder to sequence <im_start> <im_patch>*256 <im_end>
"""
return self.process_func['conv'](raw_conv, self.preprocessor, self.conv_template)
def process_target(self, raw_conv: List[Dict[str, Any]], target: Dict[str, Any], multimage_mode=False) -> Tuple[
List[Dict[str, Any]], Dict[str, Any]]:
"""
convert target placeholder to actual information in raw_conv.
e.g. normalize bounding boxes; convert bounding boxes format; replace <boxes> placeholder
"""
return self.process_func['target'](raw_conv, target, self.preprocessor, multimage_mode=multimage_mode)
def process_text(self, conv: Conversation) -> Dict[str, Any]:
"""
convert Conversation object to torch.Tensor, e.g. input_ids, labels, attention_mask, etc.
self.tokenize_kwargs control something like padding/truncation behavior.
"""
return self.process_func['text'](conv, self.preprocessor, self.mode, **self.tokenize_kwargs)
def process_image(self, image: Image.Image) -> Dict[str, Any]:
"""
convert Image.Image object to torch.Tensor
"""
return self.process_func['image'](image, self.preprocessor)
def _print_sample(self, ret_dict, raw_conv, conv):
if not hasattr(self, '_printed_sample'):
self._printed_sample = True
post_processed_labels = post_process_generate_ids(self.preprocessor['text'], ret_dict['labels'])
print(f"=================== {self.mode} sample ===================", flush=True)
print(f" input_ids: {self.preprocessor['text'].convert_ids_to_tokens(ret_dict['input_ids'])}")
print(f" labels: {self.preprocessor['text'].convert_ids_to_tokens(post_processed_labels)}")
print(f"decoded input_ids: {self.preprocessor['text'].decode(ret_dict['input_ids'])}")
print(f"decoded labels: {self.preprocessor['text'].decode(post_processed_labels)}")
if 'image' in ret_dict and ret_dict['image'] is not None:
image = ret_dict['image']
if isinstance(image, torch.Tensor):
print(f" image: {image.shape}")
elif isinstance(image, dict):
print(f" image: {image.keys()}")
elif isinstance(image, list) and len(image) > 0:
print(f" image: {len(image)}, {type(image[0])}")
else:
print(f" image: {type(image)}")
print("====================================================", flush=True)
try:
if self.training_args is not None:
_save_obj = {
'ret_dict': ret_dict,
'raw_conv': raw_conv,
'conv': conv.get_prompt(),
}
from pathlib import Path
output_dir = Path(self.training_args.output_dir)
output_dir.mkdir(exist_ok=True, parents=True)
_local_rank = self.training_args.local_rank
_word_size = self.training_args.world_size
_file_path = str(output_dir / f'sample_check_{self.mode}_{_local_rank}_{_word_size}.pt')
print(f'saving some sample to {_file_path} for check.')
torch.save(_save_obj, _file_path)
except Exception as e:
warnings.warn(f'try to save samples but get exception: {e.args}. ignored.')
class SingleImageConvDataset(SingleImageConvDatasetMixin, Dataset):
_repr_indent = 4
def __init__(self, *args, dataset_generator: Type[Dataset], **kwargs):
super().__init__(*args, **kwargs)
self.dataset_generator = dataset_generator
self.dataset = None
def initialize_if_needed(self):
"""
lazy initialize for big in-memory python object due to python 'copy-on-read' behavior
when num_worker > 0. refer: https://github.com/pytorch/pytorch/issues/13246
"""
if self.dataset is None:
# warnings.warn("it's highly recommended that set persistent_workers=True, "
# "otherwise this initialize code will run in every epoch beginning."
# "(ignore me if set)")
self.dataset = self.dataset_generator()
def __len__(self):
self.initialize_if_needed()
return len(self.dataset)
def get_raw_item(self, index) -> Dict[str, Any]:
self.initialize_if_needed()
return self.dataset[index]
def __repr__(self) -> str:
head = "Dataset " + self.__class__.__name__
body = [
f"Number of datapoints: {self.__len__()}",
]
body += self.dataset.__repr__().splitlines()
lines = [head] + [" " * self._repr_indent + line for line in body]
return "\n".join(lines)
__all__ = ['SingleImageConvDatasetMixin', 'SingleImageConvDataset']