File size: 10,055 Bytes
5e9bd47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
""" Embeddings module """
import math
import warnings

import torch
import torch.nn as nn

from onmt.modules.util_class import Elementwise


class SequenceTooLongError(Exception):
    pass


class PositionalEncoding(nn.Module):
    """Sinusoidal positional encoding for non-recurrent neural networks.

    Implementation based on "Attention Is All You Need"
    :cite:`DBLP:journals/corr/VaswaniSPUJGKP17`

    Args:
       dropout (float): dropout parameter
       dim (int): embedding size
    """

    def __init__(self, dropout, dim, max_len=5000):
        if dim % 2 != 0:
            raise ValueError("Cannot use sin/cos positional encoding with "
                             "odd dim (got dim={:d})".format(dim))
        pe = torch.zeros(max_len, dim)
        position = torch.arange(0, max_len).unsqueeze(1)
        div_term = torch.exp((torch.arange(0, dim, 2, dtype=torch.float) *
                             -(math.log(10000.0) / dim)))
        pe[:, 0::2] = torch.sin(position.float() * div_term)
        pe[:, 1::2] = torch.cos(position.float() * div_term)
        pe = pe.unsqueeze(1)
        super(PositionalEncoding, self).__init__()
        self.register_buffer('pe', pe)
        self.dropout = nn.Dropout(p=dropout)
        self.dim = dim

    def forward(self, emb, step=None):
        """Embed inputs.

        Args:
            emb (FloatTensor): Sequence of word vectors
                ``(seq_len, batch_size, self.dim)``
            step (int or NoneType): If stepwise (``seq_len = 1``), use
                the encoding for this position.
        """

        emb = emb * math.sqrt(self.dim)
        step = step or 0
        if self.pe.size(0) < step + emb.size(0):
            raise SequenceTooLongError(
                f"Sequence is {emb.size(0) + step} but PositionalEncoding is"
                f" limited to {self.pe.size(0)}. See max_len argument."
            )
        emb = emb + self.pe[step:emb.size(0)+step]
        emb = self.dropout(emb)
        return emb


class Embeddings(nn.Module):
    """Words embeddings for encoder/decoder.

    Additionally includes ability to add sparse input features
    based on "Linguistic Input Features Improve Neural Machine Translation"
    :cite:`sennrich2016linguistic`.


    .. mermaid::

       graph LR
          A[Input]
          C[Feature 1 Lookup]
          A-->B[Word Lookup]
          A-->C
          A-->D[Feature N Lookup]
          B-->E[MLP/Concat]
          C-->E
          D-->E
          E-->F[Output]

    Args:
        word_vec_size (int): size of the dictionary of embeddings.
        word_padding_idx (int): padding index for words in the embeddings.
        feat_padding_idx (List[int]): padding index for a list of features
                                   in the embeddings.
        word_vocab_size (int): size of dictionary of embeddings for words.
        feat_vocab_sizes (List[int], optional): list of size of dictionary
            of embeddings for each feature.
        position_encoding (bool): see :class:`~onmt.modules.PositionalEncoding`
        feat_merge (string): merge action for the features embeddings:
            concat, sum or mlp.
        feat_vec_exponent (float): when using `-feat_merge concat`, feature
            embedding size is N^feat_dim_exponent, where N is the
            number of values the feature takes.
        feat_vec_size (int): embedding dimension for features when using
            `-feat_merge mlp`
        dropout (float): dropout probability.
        freeze_word_vecs (bool): freeze weights of word vectors.
    """

    def __init__(self, word_vec_size,
                 word_vocab_size,
                 word_padding_idx,
                 position_encoding=False,
                 feat_merge="concat",
                 feat_vec_exponent=0.7,
                 feat_vec_size=-1,
                 feat_padding_idx=[],
                 feat_vocab_sizes=[],
                 dropout=0,
                 sparse=False,
                 freeze_word_vecs=False):
        self._validate_args(feat_merge, feat_vocab_sizes, feat_vec_exponent,
                            feat_vec_size, feat_padding_idx)

        if feat_padding_idx is None:
            feat_padding_idx = []
        self.word_padding_idx = word_padding_idx

        self.word_vec_size = word_vec_size

        # Dimensions and padding for constructing the word embedding matrix
        vocab_sizes = [word_vocab_size]
        emb_dims = [word_vec_size]
        pad_indices = [word_padding_idx]

        # Dimensions and padding for feature embedding matrices
        # (these have no effect if feat_vocab_sizes is empty)
        if feat_merge == 'sum':
            feat_dims = [word_vec_size] * len(feat_vocab_sizes)
        elif feat_vec_size > 0:
            feat_dims = [feat_vec_size] * len(feat_vocab_sizes)
        else:
            feat_dims = [int(vocab ** feat_vec_exponent)
                         for vocab in feat_vocab_sizes]
        vocab_sizes.extend(feat_vocab_sizes)
        emb_dims.extend(feat_dims)
        pad_indices.extend(feat_padding_idx)

        # The embedding matrix look-up tables. The first look-up table
        # is for words. Subsequent ones are for features, if any exist.
        emb_params = zip(vocab_sizes, emb_dims, pad_indices)
        embeddings = [nn.Embedding(vocab, dim, padding_idx=pad, sparse=sparse)
                      for vocab, dim, pad in emb_params]
        emb_luts = Elementwise(feat_merge, embeddings)

        # The final output size of word + feature vectors. This can vary
        # from the word vector size if and only if features are defined.
        # This is the attribute you should access if you need to know
        # how big your embeddings are going to be.
        self.embedding_size = (sum(emb_dims) if feat_merge == 'concat'
                               else word_vec_size)

        # The sequence of operations that converts the input sequence
        # into a sequence of embeddings. At minimum this consists of
        # looking up the embeddings for each word and feature in the
        # input. Model parameters may require the sequence to contain
        # additional operations as well.
        super(Embeddings, self).__init__()
        self.make_embedding = nn.Sequential()
        self.make_embedding.add_module('emb_luts', emb_luts)

        if feat_merge == 'mlp' and len(feat_vocab_sizes) > 0:
            in_dim = sum(emb_dims)
            mlp = nn.Sequential(nn.Linear(in_dim, word_vec_size), nn.ReLU())
            self.make_embedding.add_module('mlp', mlp)

        self.position_encoding = position_encoding

        if self.position_encoding:
            pe = PositionalEncoding(dropout, self.embedding_size)
            self.make_embedding.add_module('pe', pe)

        if freeze_word_vecs:
            self.word_lut.weight.requires_grad = False

    def _validate_args(self, feat_merge, feat_vocab_sizes, feat_vec_exponent,
                       feat_vec_size, feat_padding_idx):
        if feat_merge == "sum":
            # features must use word_vec_size
            if feat_vec_exponent != 0.7:
                warnings.warn("Merging with sum, but got non-default "
                              "feat_vec_exponent. It will be unused.")
            if feat_vec_size != -1:
                warnings.warn("Merging with sum, but got non-default "
                              "feat_vec_size. It will be unused.")
        elif feat_vec_size > 0:
            # features will use feat_vec_size
            if feat_vec_exponent != -1:
                warnings.warn("Not merging with sum and positive "
                              "feat_vec_size, but got non-default "
                              "feat_vec_exponent. It will be unused.")
        else:
            if feat_vec_exponent <= 0:
                raise ValueError("Using feat_vec_exponent to determine "
                                 "feature vec size, but got feat_vec_exponent "
                                 "less than or equal to 0.")
        n_feats = len(feat_vocab_sizes)
        if n_feats != len(feat_padding_idx):
            raise ValueError("Got unequal number of feat_vocab_sizes and "
                             "feat_padding_idx ({:d} != {:d})".format(
                                n_feats, len(feat_padding_idx)))

    @property
    def word_lut(self):
        """Word look-up table."""
        return self.make_embedding[0][0]

    @property
    def emb_luts(self):
        """Embedding look-up table."""
        return self.make_embedding[0]

    def load_pretrained_vectors(self, emb_file):
        """Load in pretrained embeddings.

        Args:
          emb_file (str) : path to torch serialized embeddings
        """

        if emb_file:
            pretrained = torch.load(emb_file)
            pretrained_vec_size = pretrained.size(1)
            if self.word_vec_size > pretrained_vec_size:
                self.word_lut.weight.data[:, :pretrained_vec_size] = pretrained
            elif self.word_vec_size < pretrained_vec_size:
                self.word_lut.weight.data \
                    .copy_(pretrained[:, :self.word_vec_size])
            else:
                self.word_lut.weight.data.copy_(pretrained)

    def forward(self, source, step=None):
        """Computes the embeddings for words and features.

        Args:
            source (LongTensor): index tensor ``(len, batch, nfeat)``

        Returns:
            FloatTensor: Word embeddings ``(len, batch, embedding_size)``
        """

        if self.position_encoding:
            for i, module in enumerate(self.make_embedding._modules.values()):
                if i == len(self.make_embedding._modules.values()) - 1:
                    source = module(source, step=step)
                else:
                    source = module(source)
        else:
            source = self.make_embedding(source)

        return source

    def update_dropout(self, dropout):
        if self.position_encoding:
            self._modules['make_embedding'][1].dropout.p = dropout