File size: 7,183 Bytes
5e9bd47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import os
import argparse
from typing import List
import PIL
import torch
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.backends.backend_agg import FigureCanvasAgg

from .pix2seq import build_pix2seq_model
from .tokenizer import get_tokenizer
from .dataset import make_transforms
from .data import postprocess_reactions, ReactionImageData

from molscribe import MolScribe
from huggingface_hub import hf_hub_download
import easyocr


class Reaction:

    def __init__(self, model_path, device=None):
        """
        :param model_path: path of the model checkpoint.
        :param device: torch device, defaults to be CPU.
        """
        args = self._get_args()
        args.format = 'reaction'
        states = torch.load(model_path, map_location=torch.device('cpu'))
        if device is None:
            device = torch.device('cpu')
        self.device = device
        self.tokenizer = get_tokenizer(args)
        self.model = self.get_model(args, self.tokenizer, self.device, states['state_dict'])
        self.transform = make_transforms('test', augment=False, debug=False)
        self.molscribe = self.get_molscribe()
        self.ocr_model = self.get_ocr_model()

    def _get_args(self):
        parser = argparse.ArgumentParser()
        # * Backbone
        parser.add_argument('--backbone', default='resnet50', type=str,
                            help="Name of the convolutional backbone to use")
        parser.add_argument('--dilation', action='store_true',
                            help="If true, we replace stride with dilation in the last convolutional block (DC5)")
        parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
                            help="Type of positional embedding to use on top of the image features")
        # * Transformer
        parser.add_argument('--enc_layers', default=6, type=int, help="Number of encoding layers in the transformer")
        parser.add_argument('--dec_layers', default=6, type=int, help="Number of decoding layers in the transformer")
        parser.add_argument('--dim_feedforward', default=1024, type=int,
                            help="Intermediate size of the feedforward layers in the transformer blocks")
        parser.add_argument('--hidden_dim', default=256, type=int,
                            help="Size of the embeddings (dimension of the transformer)")
        parser.add_argument('--dropout', default=0.1, type=float, help="Dropout applied in the transformer")
        parser.add_argument('--nheads', default=8, type=int,
                            help="Number of attention heads inside the transformer's attentions")
        parser.add_argument('--pre_norm', action='store_true')
        # Data
        parser.add_argument('--format', type=str, default='reaction')
        parser.add_argument('--input_size', type=int, default=1333)

        args = parser.parse_args([])
        args.pix2seq = True
        args.pix2seq_ckpt = None
        args.pred_eos = True
        return args

    def get_model(self, args, tokenizer, device, model_states):
        def remove_prefix(state_dict):
            return {k.replace('model.', ''): v for k, v in state_dict.items()}

        model = build_pix2seq_model(args, tokenizer[args.format])
        model.load_state_dict(remove_prefix(model_states), strict=False)
        model.to(device)
        model.eval()
        return model

    def get_molscribe(self):
        ckpt_path = hf_hub_download("yujieq/MolScribe", "swin_base_char_aux_1m.pth")
        molscribe = MolScribe(ckpt_path, device=self.device)
        return molscribe

    def get_ocr_model(self):
        reader = easyocr.Reader(['en'], gpu=(self.device.type == 'cuda'))
        return reader

    def predict_images(self, input_images: List, batch_size=16, molscribe=False, ocr=False):
        # images: a list of PIL images
        device = self.device
        tokenizer = self.tokenizer['reaction']
        predictions = []
        for idx in range(0, len(input_images), batch_size):
            batch_images = input_images[idx:idx+batch_size]
            images, refs = zip(*[self.transform(image) for image in batch_images])
            images = torch.stack(images, dim=0).to(device)
            with torch.no_grad():
                pred_seqs, pred_scores = self.model(images, max_len=tokenizer.max_len)
            for i, (seqs, scores) in enumerate(zip(pred_seqs, pred_scores)):
                reactions = tokenizer.sequence_to_data(seqs.tolist(), scores.tolist(), scale=refs[i]['scale'])
                reactions = postprocess_reactions(
                    reactions,
                    image=input_images[i],
                    molscribe=self.molscribe if molscribe else None,
                    ocr=self.ocr_model if ocr else None
                )
                predictions.append(reactions)
        return predictions

    def predict_image(self, image, **kwargs):
        predictions = self.predict_images([image], **kwargs)
        return predictions[0]

    def predict_image_files(self, image_files: List, **kwargs):
        input_images = []
        for path in image_files:
            image = PIL.Image.open(path).convert("RGB")
            input_images.append(image)
        return self.predict_images(input_images, **kwargs)

    def predict_image_file(self, image_file: str, **kwargs):
        predictions = self.predict_image_files([image_file], **kwargs)
        return predictions[0]

    def draw_predictions(self, predictions, image=None, image_file=None):
        results = []
        assert image or image_file
        data = ReactionImageData(predictions=predictions, image=image, image_file=image_file)
        h, w = np.array([data.height, data.width]) * 10 / max(data.height, data.width)
        for r in data.pred_reactions:
            fig, ax = plt.subplots(figsize=(w, h))
            fig.tight_layout()
            canvas = FigureCanvasAgg(fig)
            ax.imshow(data.image)
            ax.axis('off')
            r.draw(ax)
            canvas.draw()
            buf = canvas.buffer_rgba()
            results.append(np.asarray(buf))
            plt.close(fig)
        return results

    def draw_predictions_combined(self, predictions, image=None, image_file=None):
        assert image or image_file
        data = ReactionImageData(predictions=predictions, image=image, image_file=image_file)
        h, w = np.array([data.height, data.width]) * 10 / max(data.height, data.width)
        n = len(data.pred_reactions)
        fig, axes = plt.subplots(n, 1, figsize=(w, h * n))
        if n == 1:
            axes = [axes]
        fig.tight_layout(rect=(0.02, 0.02, 0.99, 0.99))
        canvas = FigureCanvasAgg(fig)
        for i, r in enumerate(data.pred_reactions):
            ax = axes[i]
            ax.imshow(data.image)
            ax.set_xticks([])
            ax.set_yticks([])
            ax.set_title(f'reaction # {i}', fontdict={'fontweight': 'bold', 'fontsize': 14})
            r.draw(ax)
        canvas.draw()
        buf = canvas.buffer_rgba()
        result_image = np.asarray(buf)
        plt.close(fig)
        return result_image