File size: 14,774 Bytes
5e9bd47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
import os
import cv2
import numpy as np
import matplotlib.colors as colors
import matplotlib.patches as patches
class BBox(object):
def __init__(self, bbox, image_data=None, xyxy=False, normalized=False):
"""
:param bbox: {'catrgory_id', 'bbox'}
:param input_image: ImageData object
:param xyxy:
:param normalized:
"""
self.data = bbox
self.image_data = image_data
if image_data is not None:
self.width = image_data.width
self.height = image_data.height
self.category_id = bbox['category_id']
if xyxy:
x1, y1, x2, y2 = bbox['bbox']
else:
x1, y1, w, h = bbox['bbox']
x2, y2 = x1 + w, y1 + h
if not normalized:
x1, y1, x2, y2 = x1 / self.width, y1 / self.height, x2 / self.width, y2 / self.height
self.x1, self.y1, self.x2, self.y2 = x1, y1, x2, y2
@property
def is_mol(self):
return self.category_id == 1
@property
def is_empty(self):
return abs(self.x2 - self.x1) <= 0.01 or abs(self.y2 - self.y1) <= 0.01
def unnormalize(self):
return self.x1 * self.width, self.y1 * self.height, self.x2 * self.width, self.y2 * self.height
def image(self):
x1, y1, x2, y2 = self.unnormalize()
x1, y1, x2, y2 = max(int(x1), 0), max(int(y1), 0), min(int(x2), self.width), min(int(y2), self.height)
return self.image_data.image[y1:y2, x1:x2]
COLOR = {1: 'purple', 2: 'orange', 3: 'cyan', 4: 'magenta'}
CATEGORY = {1: 'Str', 2: 'Txt', 3: 'Txt', 4: 'Sup'}
def draw(self, ax, color=None):
x1, y1, x2, y2 = self.unnormalize()
if color is None:
color = self.COLOR[self.category_id]
rect = patches.Rectangle(
(x1, y1), x2-x1, y2-y1, linewidth=1, edgecolor=color, facecolor=colors.to_rgba(color, 0.2))
text = f'{self.CATEGORY[self.category_id]}'
ax.text(x2, y2, text, fontsize=20, bbox=dict(linewidth=0.5, facecolor='Lightgreen', alpha=0.5))
ax.add_patch(rect)
return
def set_smiles(self, smiles, coords, symbols, edges, molfile=None):
rounded_coords = [[round(coord[0], 3), round(coord[1], 3)] for coord in coords] #pred['oringinal_coords'],pred['original_symbols'],pred['orignal_edges']
self.data['smiles'] = smiles
self.data['coords'] = rounded_coords
self.data['symbols'] = symbols
self.data['edges'] = edges
if molfile:
self.data['molfile'] = molfile
def set_text(self, text):
self.data['text'] = text
def to_json(self):
return self.data
class Reaction(object):
def __init__(self, reaction=None, bboxes=None, image_data=None):
'''
if image_data is None, create from prediction
if image_data is not None, create from groundtruth
'''
self.reactants = []
self.conditions = []
self.products = []
self.bboxes = []
if reaction is not None:
for x in reaction['reactants']:
bbox = bboxes[x] if type(x) is int else BBox(x, image_data, xyxy=True, normalized=True)
self.bboxes.append(bbox)
self.reactants.append(len(self.bboxes) - 1)
for x in reaction['conditions']:
bbox = bboxes[x] if type(x) is int else BBox(x, image_data, xyxy=True, normalized=True)
self.bboxes.append(bbox)
self.conditions.append(len(self.bboxes) - 1)
for x in reaction['products']:
bbox = bboxes[x] if type(x) is int else BBox(x, image_data, xyxy=True, normalized=True)
self.bboxes.append(bbox)
self.products.append(len(self.bboxes) - 1)
def to_json(self):
return {
'reactants': [self.bboxes[i].to_json() for i in self.reactants],
'conditions': [self.bboxes[i].to_json() for i in self.conditions],
'products': [self.bboxes[i].to_json() for i in self.products]
}
def _deduplicate_bboxes(self, indices):
results = []
for i, idx_i in enumerate(indices):
duplicate = False
for j, idx_j in enumerate(indices[:i]):
if get_iou(self.bboxes[idx_i], self.bboxes[idx_j]) > 0.6:
duplicate = True
break
if not duplicate:
results.append(idx_i)
return results
def deduplicate(self):
flags = [False] * len(self.bboxes)
bbox_list = self.reactants + self.products + self.conditions
for i, idx_i in enumerate(bbox_list):
if self.bboxes[idx_i].is_empty:
flags[idx_i] = True
continue
for idx_j in bbox_list[:i]:
if flags[idx_j] is False and get_iou(self.bboxes[idx_i], self.bboxes[idx_j]) > 0.6:
flags[idx_i] = True
break
self.reactants = [i for i in self.reactants if not flags[i]]
self.conditions = [i for i in self.conditions if not flags[i]]
self.products = [i for i in self.products if not flags[i]]
def schema(self, mol_only=False):
# Return reactants, conditions, and products. If mol_only is True, only include bboxes that are mol structures.
if mol_only:
reactants, conditions, products = [[idx for idx in indices if self.bboxes[idx].is_mol]
for indices in [self.reactants, self.conditions, self.products]]
# It would be unfair to compare two reactions if their reactants or products are empty after filtering.
# Setting them to the original ones in this case.
if len(reactants) == 0:
reactants = self.reactants
if len(products) == 0:
products = self.products
return reactants, conditions, products
else:
return self.reactants, self.conditions, self.products
def compare(self, other, mol_only=False, merge_condition=False, debug=False):
reactants1, conditions1, products1 = self.schema(mol_only)
reactants2, conditions2, products2 = other.schema(mol_only)
if debug:
print(reactants1, conditions1, products1, ';', reactants2, conditions2, products2)
if len(reactants1) + len(conditions1) + len(products1) == 0:
# schema is empty, always return False
return False
if len(reactants1) + len(conditions1) + len(products1) != len(reactants2) + len(conditions2) + len(products2):
return False
# Match use original index
match1, match2, scores = get_bboxes_match(self.bboxes, other.bboxes, iou_thres=0.5)
m_reactants, m_conditions, m_products = [[match1[i] for i in x] for x in [reactants1, conditions1, products1]]
if any([m == -1 for m in m_reactants + m_conditions + m_products]):
return False
if debug:
print(m_reactants, m_conditions, m_products, ';', reactants2, conditions2, products2)
if merge_condition:
return sorted(m_reactants + m_conditions) == sorted(reactants2 + conditions2) \
and sorted(m_products) == sorted(products2)
else:
return sorted(m_reactants) == sorted(reactants2) and sorted(m_conditions) == sorted(conditions2) \
and sorted(m_products) == sorted(products2)
def __eq__(self, other):
# Exact matching of two reactions
return self.compare(other)
def draw(self, ax):
for i in self.reactants:
self.bboxes[i].draw(ax, color='cyan')
for i in self.conditions:
self.bboxes[i].draw(ax, color='red')
for i in self.products:
self.bboxes[i].draw(ax, color='orange')
return
class ReactionSet(object):
def __init__(self, reactions, bboxes=None, image_data=None):
self.reactions = [Reaction(reaction, bboxes, image_data) for reaction in reactions]
def __len__(self):
return len(self.reactions)
def __iter__(self):
return iter(self.reactions)
def __getitem__(self, item):
return self.reactions[item]
def deduplicate(self):
results = []
for reaction in self.reactions:
if any(r == reaction for r in results):
continue
if len(reaction.reactants) < 1 or len(reaction.products) < 1:
continue
results.append(reaction)
self.reactions = results
def to_json(self):
return [r.to_json() for r in self.reactions]
class ImageData(object):
def __init__(self, data=None, predictions=None, image_file=None, image=None):
self.width, self.height = None, None
if data:
self.file_name = data['file_name']
self.width = data['width']
self.height = data['height']
if image_file:
self.image = cv2.imread(image_file)
self.height, self.width, _ = self.image.shape
if image is not None:
if not isinstance(image, np.ndarray):
image = np.asarray(image)
self.image = image
self.height, self.width, _ = self.image.shape
if data and 'bboxes' in data:
self.gold_bboxes = [BBox(bbox, self, xyxy=False, normalized=False) for bbox in data['bboxes']]
if predictions is not None:
self.pred_bboxes = [BBox(bbox, self, xyxy=True, normalized=True) for bbox in predictions]
def draw_gold(self, ax, image=None):
if image is not None:
ax.imshow(image)
for b in self.gold_bboxes:
b.draw(ax)
def draw_prediction(self, ax, image=None):
if image is not None:
ax.imshow(image)
for b in self.pred_bboxes:
b.draw(ax)
class ReactionImageData(ImageData):
def __init__(self, data=None, predictions=None, image_file=None, image=None):
super().__init__(data=data, image_file=image_file, image=image)
if data and 'reactions' in data:
self.gold_reactions = ReactionSet(data['reactions'], self.gold_bboxes, image_data=self)
if predictions is not None:
self.pred_reactions = ReactionSet(predictions, image_data=self)
self.pred_reactions.deduplicate()
def evaluate(self, mol_only=False, merge_condition=False, debug=False):
gold_total = len(self.gold_reactions)
gold_hit = [False] * gold_total
pred_total = len(self.pred_reactions)
pred_hit = [False] * pred_total
for i, ri in enumerate(self.gold_reactions):
for j, rj in enumerate(self.pred_reactions):
if gold_hit[i] and pred_hit[j]:
continue
if ri.compare(rj, mol_only, merge_condition, debug):
gold_hit[i] = True
pred_hit[j] = True
return gold_hit, pred_hit
def get_iou(bb1, bb2):
"""Calculate the Intersection over Union (IoU) of two bounding boxes."""
bb1 = {'x1': bb1.x1, 'y1': bb1.y1, 'x2': bb1.x2, 'y2': bb1.y2}
bb2 = {'x1': bb2.x1, 'y1': bb2.y1, 'x2': bb2.x2, 'y2': bb2.y2}
assert bb1['x1'] < bb1['x2']
assert bb1['y1'] < bb1['y2']
assert bb2['x1'] < bb2['x2']
assert bb2['y1'] < bb2['y2']
# determine the coordinates of the intersection rectangle
x_left = max(bb1['x1'], bb2['x1'])
y_top = max(bb1['y1'], bb2['y1'])
x_right = min(bb1['x2'], bb2['x2'])
y_bottom = min(bb1['y2'], bb2['y2'])
if x_right < x_left or y_bottom < y_top:
return 0.0
# The intersection of two axis-aligned bounding boxes is always an
# axis-aligned bounding box
intersection_area = (x_right - x_left) * (y_bottom - y_top)
# compute the area of both AABBs
bb1_area = (bb1['x2'] - bb1['x1']) * (bb1['y2'] - bb1['y1'])
bb2_area = (bb2['x2'] - bb2['x1']) * (bb2['y2'] - bb2['y1'])
# compute the intersection over union by taking the intersection
# area and dividing it by the sum of prediction + ground-truth
# areas - the interesection area
iou = intersection_area / float(bb1_area + bb2_area - intersection_area)
assert iou >= 0.0
assert iou <= 1.0
return iou
def get_bboxes_match(bboxes1, bboxes2, iou_thres=0.5, match_category=False):
"""Find the match between two sets of bboxes. Each bbox is matched with a bbox with maximum overlap
(at least above iou_thres). -1 if a bbox does not have a match."""
scores = np.zeros((len(bboxes1), len(bboxes2)))
for i, bbox1 in enumerate(bboxes1):
for j, bbox2 in enumerate(bboxes2):
if match_category and bbox1.category_id != bbox2.category_id:
scores[i, j] = 0
else:
scores[i, j] = get_iou(bbox1, bbox2)
match1 = scores.argmax(axis=1)
for i in range(len(match1)):
if scores[i, match1[i]] < iou_thres:
match1[i] = -1
match2 = scores.argmax(axis=0)
for j in range(len(match2)):
if scores[match2[j], j] < iou_thres:
match2[j] = -1
return match1, match2, scores
def deduplicate_reactions(reactions):
pred_reactions = ReactionSet(reactions)
for r in pred_reactions:
r.deduplicate()
pred_reactions.deduplicate()
return pred_reactions.to_json()
def postprocess_reactions(reactions, image_file=None, image=None, molscribe=None, ocr=None, batch_size=32):
image_data = ReactionImageData(predictions=reactions, image_file=image_file, image=image)
pred_reactions = image_data.pred_reactions
for r in pred_reactions:
r.deduplicate()
pred_reactions.deduplicate()
if molscribe:
bbox_images, bbox_indices = [], []
for i, reaction in enumerate(pred_reactions):
for j, bbox in enumerate(reaction.bboxes):
if bbox.is_mol:
bbox_images.append(bbox.image())
bbox_indices.append((i, j))
if len(bbox_images) > 0:
predictions = molscribe.predict_images(bbox_images, batch_size=batch_size)
for (i, j), pred in zip(bbox_indices, predictions):
#pred_reactions[i].bboxes[j].set_smiles(pred['smiles'], pred['molfile'])
pred_reactions[i].bboxes[j].set_smiles(pred['smiles'],pred['oringinal_coords'],pred['original_symbols'],pred['orignal_edges'])
if ocr:
for reaction in pred_reactions:
for bbox in reaction.bboxes:
if not bbox.is_mol:
text = ocr.readtext(bbox.image(), detail=0)
bbox.set_text(text)
return pred_reactions.to_json()
|