File size: 5,067 Bytes
5e9bd47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import os
import gradio as gr
import json
from rxnim import RXNIM
from getReaction import generate_combined_image
import torch
from rxn.reaction import Reaction

PROMPT_DIR = "prompts/"
ckpt_path = "./rxn/model/model.ckpt"
model = Reaction(ckpt_path, device=torch.device('cpu'))

# 定义 prompt 文件名到友好名字的映射
PROMPT_NAMES = {
    "2_RxnOCR.txt": "Reaction Image Parsing Workflow",
}
example_diagram = "examples/exp.png"

def list_prompt_files_with_names():
    """
    列出 prompts 目录下的所有 .txt 文件,为没有名字的生成默认名字。
    返回 {friendly_name: filename} 映射。
    """
    prompt_files = {}
    for f in os.listdir(PROMPT_DIR):
        if f.endswith(".txt"):
            # 如果文件名有预定义的名字,使用预定义名字
            friendly_name = PROMPT_NAMES.get(f, f"Task: {os.path.splitext(f)[0]}")
            prompt_files[friendly_name] = f
    return prompt_files

def parse_reactions(output_json):
    """
    解析 JSON 格式的反应数据并格式化输出,包含颜色定制。
    """
    reactions_data = json.loads(output_json)  # 转换 JSON 字符串为字典
    reactions_list = reactions_data.get("reactions", [])
    detailed_output = []

    for reaction in reactions_list:
        reaction_id = reaction.get("reaction_id", "Unknown ID")
        reactants = [r.get("smiles", "Unknown") for r in reaction.get("reactants", [])]
        conditions = [
            f"<span style='color:red'>{c.get('smiles', c.get('text', 'Unknown'))}[{c.get('role', 'Unknown')}]</span>"
            for c in reaction.get("conditions", [])
        ]
        conditions_1 = [
            f"<span style='color:black'>{c.get('smiles', c.get('text', 'Unknown'))}[{c.get('role', 'Unknown')}]</span>"
            for c in reaction.get("conditions", [])
        ]
        products = [f"<span style='color:orange'>{p.get('smiles', 'Unknown')}</span>" for p in reaction.get("products", [])]
        products_1 = [f"<span style='color:black'>{p.get('smiles', 'Unknown')}</span>" for p in reaction.get("products", [])]

        # 构造反应的完整字符串,定制字体颜色
        full_reaction = f"{'.'.join(reactants)}>>{'.'.join(products_1)} | {', '.join(conditions_1)}"
        full_reaction = f"<span style='color:black'>{full_reaction}</span>"
        
        # 详细反应格式化输出
        reaction_output = f"<b>Reaction: </b> {reaction_id}<br>"
        reaction_output += f"  Reactants: <span style='color:blue'>{', '.join(reactants)}</span><br>"
        reaction_output += f"  Conditions: {', '.join(conditions)}<br>"
        reaction_output += f"  Products: {', '.join(products)}<br>"
        reaction_output += f"  <b>Full Reaction:</b> {full_reaction}<br>"
        reaction_output += "<br>"
        detailed_output.append(reaction_output)

    return detailed_output

def process_chem_image(image, selected_task):
    chem_mllm = RXNIM()

    # 将友好名字转换为实际文件名
    prompt_path = os.path.join(PROMPT_DIR, prompts_with_names[selected_task])
    image_path = "temp_image.png"
    image.save(image_path)

    # 调用 RXNIM 处理
    rxnim_result = chem_mllm.process(image_path, prompt_path)

    # 将 JSON 结果解析为结构化输出
    detailed_reactions = parse_reactions(rxnim_result)

    # 调用 RxnScribe 模型处理并生成整合图像
    predictions = model.predict_image_file(image_path, molscribe=True, ocr=True)
    combined_image_path = generate_combined_image(predictions, image_path)

    json_file_path = "output.json"
    with open(json_file_path, "w") as json_file:
        json.dump(json.loads(rxnim_result), json_file, indent=4)


    # 返回详细反应和整合图像
    return "\n\n".join(detailed_reactions), combined_image_path, example_diagram, json_file_path


# 获取 prompts 和友好名字
prompts_with_names = list_prompt_files_with_names()

# 示例数据:图像路径 + 任务选项
examples = [
    
    ["examples/reaction1.png", "Reaction Image Parsing Workflow"],
    ["examples/reaction2.png", "Reaction Image Parsing Workflow"],
    ["examples/reaction3.png", "Reaction Image Parsing Workflow"],
    ["examples/reaction4.png", "Reaction Image Parsing Workflow"],
]

# 定义 Gradio 界面
demo = gr.Interface(
    fn=process_chem_image,
    inputs=[
        gr.Image(type="pil", label="Upload Reaction Image"),
        gr.Radio(
            choices=list(prompts_with_names.keys()),  # 显示任务名字
            label="Select a predefined task",
        ),
    ],
    outputs=[
        gr.HTML(label="Reaction outputs"),
        gr.Image(label="Visualization"), # 显示整合图像
        gr.Image(value=example_diagram, label="Schematic Diagram"),
        gr.File(label="Download JSON File"),

    ],
    title="Towards Large-scale Chemical Reaction Image Parsing via a Multimodal Large Language Model",
    description="Upload a reaction image and select a predefined task prompt.",
    examples=examples,  # 使用嵌套列表作为示例
    examples_per_page=20,
)

demo.launch()