File size: 41,692 Bytes
3e1d9f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 |
import os
import sys
import logging
import time
import argparse
import tempfile
from pathlib import Path
from typing import List, Any, Union
import torch
import numpy as np
import gradio as gr
from PIL import Image
from PIL import ImageDraw, ImageFont
from mmengine import Config
import transformers
from transformers import BitsAndBytesConfig
sys.path.append(str(Path(__file__).parent.parent.parent))
from mllm.dataset.process_function import PlainBoxFormatter
from mllm.dataset.builder import prepare_interactive
from mllm.utils import draw_bounding_boxes
from mllm.models.builder.build_shikra import load_pretrained_shikra
log_level = logging.DEBUG
transformers.logging.set_verbosity(log_level)
transformers.logging.enable_default_handler()
transformers.logging.enable_explicit_format()
TEMP_FILE_DIR = Path(__file__).parent / 'temp'
TEMP_FILE_DIR.mkdir(parents=True, exist_ok=True)
#########################################
# mllm model init
#########################################
parser = argparse.ArgumentParser("Shikra Web Demo")
parser.add_argument('--model_path', required=True)
parser.add_argument('--load_in_8bit', action='store_true')
parser.add_argument('--server_name', default=None)
parser.add_argument('--server_port', type=int, default=None)
args = parser.parse_args()
print(args)
model_name_or_path = args.model_path
model_args = Config(dict(
type='shikra',
version='v1',
# checkpoint config
cache_dir=None,
model_name_or_path=model_name_or_path,
vision_tower=r'openai/clip-vit-large-patch14',
pretrain_mm_mlp_adapter=None,
# model config
mm_vision_select_layer=-2,
model_max_length=3072,
# finetune config
freeze_backbone=False,
tune_mm_mlp_adapter=False,
freeze_mm_mlp_adapter=False,
# data process config
is_multimodal=True,
sep_image_conv_front=False,
image_token_len=256,
mm_use_im_start_end=True,
target_processor=dict(
boxes=dict(type='PlainBoxFormatter'),
),
process_func_args=dict(
conv=dict(type='ShikraConvProcess'),
target=dict(type='BoxFormatProcess'),
text=dict(type='ShikraTextProcess'),
image=dict(type='ShikraImageProcessor'),
),
conv_args=dict(
conv_template='vicuna_v1.1',
transforms=dict(type='Expand2square'),
tokenize_kwargs=dict(truncation_size=None),
),
gen_kwargs_set_pad_token_id=True,
gen_kwargs_set_bos_token_id=True,
gen_kwargs_set_eos_token_id=True,
))
training_args = Config(dict(
bf16=False,
fp16=True,
device='cuda',
fsdp=None,
))
if args.load_in_8bit:
quantization_kwargs = dict(
quantization_config=BitsAndBytesConfig(
load_in_8bit=True,
)
)
else:
quantization_kwargs = dict()
model, preprocessor = load_pretrained_shikra(model_args, training_args, **quantization_kwargs)
if not getattr(model, 'is_quantized', False):
model.to(dtype=torch.float16, device=torch.device('cuda'))
if not getattr(model.model.vision_tower[0], 'is_quantized', False):
model.model.vision_tower[0].to(dtype=torch.float16, device=torch.device('cuda'))
print(f"LLM device: {model.device}, is_quantized: {getattr(model, 'is_quantized', False)}, is_loaded_in_4bit: {getattr(model, 'is_loaded_in_4bit', False)}, is_loaded_in_8bit: {getattr(model, 'is_loaded_in_8bit', False)}")
print(f"vision device: {model.model.vision_tower[0].device}, is_quantized: {getattr(model.model.vision_tower[0], 'is_quantized', False)}, is_loaded_in_4bit: {getattr(model, 'is_loaded_in_4bit', False)}, is_loaded_in_8bit: {getattr(model, 'is_loaded_in_8bit', False)}")
preprocessor['target'] = {'boxes': PlainBoxFormatter()}
tokenizer = preprocessor['text']
#########################################
# demo utils
#########################################
def parse_text(text):
text = text.replace("<image>", "<image>")
return text
def setup_gradio_warning(level=1):
"""
level 0 1 2 3
level IGNORE Weak Strong Error
has Warning _foo Warning Warning Error
no Warning _foo _foo Error Error
"""
def _dummy_func(*args, **kwargs):
pass
def _raise_error(*args, **kwargs):
raise gr.Error(*args, **kwargs)
assert level in [0, 1, 2, 3]
if level >= 3:
return _raise_error
if level <= 0:
return _dummy_func
if hasattr(gr, 'Warning'):
return gr.Warning
if level == 1:
return _dummy_func
return _raise_error
grWarning = setup_gradio_warning()
def de_norm_box_xyxy(box, *, w, h):
x1, y1, x2, y2 = box
x1 = x1 * w
x2 = x2 * w
y1 = y1 * h
y2 = y2 * h
box = x1, y1, x2, y2
return box
def expand2square(pil_img, background_color=(255, 255, 255)):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
def box_xyxy_expand2square(box, *, w, h):
if w == h:
return box
if w > h:
x1, y1, x2, y2 = box
y1 += (w - h) // 2
y2 += (w - h) // 2
box = x1, y1, x2, y2
return box
assert w < h
x1, y1, x2, y2 = box
x1 += (h - w) // 2
x2 += (h - w) // 2
box = x1, y1, x2, y2
return box
def resize_pil_img(pil_img: Image.Image, *, w, h):
old_height, old_width = pil_img.height, pil_img.width
new_height, new_width = (h, w)
if (new_height, new_width) == (old_height, old_width):
return pil_img
return pil_img.resize((new_width, new_height))
def resize_box_xyxy(boxes, *, w, h, ow, oh):
old_height, old_width = (oh, ow)
new_height, new_width = (h, w)
if (new_height, new_width) == (old_height, old_width):
return boxes
w_ratio = new_width / old_width
h_ratio = new_height / old_height
out_boxes = []
for box in boxes:
x1, y1, x2, y2 = box
x1 = x1 * w_ratio
x2 = x2 * w_ratio
y1 = y1 * h_ratio
y2 = y2 * h_ratio
nb = (x1, y1, x2, y2)
out_boxes.append(nb)
return out_boxes
# use mask to simulate box
# copy from https://github.com/gligen/GLIGEN/blob/master/demo/app.py
class ImageMask(gr.components.Image):
is_template = True
def __init__(self, **kwargs):
super().__init__(source="upload", tool="sketch", interactive=True, **kwargs)
#super().__init__(tool = "sketch", interactive=True, **kwargs)
def binarize(x):
return (x != 0).astype('uint8') * 255
class ImageBoxState:
def __init__(self, draw_size: Union[int, float, tuple, list] = 512):
if isinstance(draw_size, (float, int)):
draw_size = (draw_size, draw_size)
assert len(draw_size) == 2
self.size = draw_size
self.height, self.width = self.size[0], self.size[1]
self.reset_state()
# noinspection PyAttributeOutsideInit
def reset_state(self):
self.image = None
self.boxes = []
self.masks = []
# noinspection PyAttributeOutsideInit
def reset_masks(self):
self.boxes = []
self.masks = []
# noinspection PyAttributeOutsideInit
def update_image(self, image):
if image != self.image:
self.reset_state()
self.image = image
def update_mask(self, mask):
if len(self.masks) == 0:
last_mask = np.zeros_like(mask)
else:
last_mask = self.masks[-1]
if type(mask) == np.ndarray and mask.size > 1:
diff_mask = mask - last_mask
else:
diff_mask = np.zeros([])
if diff_mask.sum() > 0:
# noinspection PyArgumentList
x1x2 = np.where(diff_mask.max(0) != 0)[0]
# noinspection PyArgumentList
y1y2 = np.where(diff_mask.max(1) != 0)[0]
y1, y2 = y1y2.min(), y1y2.max()
x1, x2 = x1x2.min(), x1x2.max()
if (x2 - x1 > 5) and (y2 - y1 > 5):
self.masks.append(mask.copy())
self.boxes.append(tuple(map(int, (x1, y1, x2, y2))))
def update_box(self, box):
x1, y1, x2, y2 = box
x1, x2 = min(x1, x2), max(x1, x2)
y1, y2 = min(y1, y2), max(y1, y2)
self.boxes.append(tuple(map(int, (x1, y1, x2, y2))))
def to_model(self):
if self.image is None:
return {}
image = expand2square(self.image)
boxes = [box_xyxy_expand2square(box, w=self.image.width, h=self.image.height) for box in self.boxes]
return {'image': image, 'boxes': boxes}
def draw_boxes(self):
assert self.image is not None
grounding_texts = [f'{bid}' for bid in range(len(self.boxes))]
image = expand2square(self.image)
boxes = [box_xyxy_expand2square(box, w=self.image.width, h=self.image.height) for box in self.boxes]
image_to_draw = resize_pil_img(image, w=self.width, h=self.height)
boxes_to_draw = resize_box_xyxy(boxes, w=self.width, h=self.height, ow=image.width, oh=image.height)
def _draw(img, _boxes: List[Any], texts: List[str]):
assert img is not None
colors = ["red", "blue", "green", "olive", "orange", "brown", "cyan", "purple"]
_img_draw = ImageDraw.Draw(img)
font = ImageFont.truetype(os.path.join(os.path.dirname(__file__), 'assets/DejaVuSansMono.ttf'), size=18)
for bid, box in enumerate(_boxes):
_img_draw.rectangle((box[0], box[1], box[2], box[3]), outline=colors[bid % len(colors)], width=4)
anno_text = texts[bid]
_img_draw.rectangle((box[0], box[3] - int(font.size * 1.2), box[0] + int((len(anno_text) + 0.8) * font.size * 0.6), box[3]),
outline=colors[bid % len(colors)], fill=colors[bid % len(colors)], width=4)
_img_draw.text((box[0] + int(font.size * 0.2), box[3] - int(font.size * 1.2)), anno_text, font=font, fill=(255, 255, 255))
return img
out_draw = _draw(image_to_draw, boxes_to_draw, grounding_texts)
return out_draw
def add_submit_temp_image(state, temp_image_path):
if '_submit_temp_images' not in state:
state['_submit_temp_images'] = []
state['_submit_temp_images'].append(temp_image_path)
return state
def clear_submit_temp_image(state):
if '_submit_temp_images' in state:
for path in state['_submit_temp_images']:
os.remove(path)
del state['_submit_temp_images']
return state
if __name__ == '__main__':
with gr.Blocks() as demo:
logo_file_url = f"file={os.path.join(os.path.dirname(__file__), 'assets/logo.png')}"
gr.HTML(
f"""
<p align="center"><img src="{logo_file_url}" alt="Logo" width="130"></p>
<h1 align="center"><font color="#966661">Shikra</font>: Unleashing Multimodal LLM’s Referential Dialogue Magic</h1>
<p align="center">
<a href='https://github.com/shikras/shikra' target='_blank'>[Project]</a>
<a href='http://arxiv.org/abs/2306.15195' target='_blank'>[Paper]</a>
</p>
<p>
<font color="#966661"><strong>Shikra</strong></font>, an MLLM designed to kick off <strong>referential dialogue</strong> by excelling in spatial coordinate inputs/outputs in natural language, <strong>without</strong> additional vocabularies, position encoders, pre-/post-detection, or external plug-in models.
</p>
<h2>User Manual</h2>
<ul>
<li><p><strong>Step 1.</strong> Upload an image</p>
</li>
<li><p><strong>Step 2.</strong> Select Question Format in <code>Task Template</code>. Task template and user input (if exists) will be assembled into final inputs to the model.</p>
<ul>
<li><strong>SpotCap</strong>: Ask the model to generate a <strong>grounded caption</strong>.</li>
<li><strong>GCoT</strong>: Ask the model to answer the question and provide a <strong>Grounding-CoT</strong>, which is a step-by-step reasoning with explicit grounding information.</li>
<li><strong>Cap</strong>: Ask the model to generate a <strong>short caption</strong>.</li>
<li><strong>VQA</strong>: Ask the model to answer the question <strong>directly</strong>.</li>
<li><strong>REC</strong>: <strong>Referring Expression Comprehension</strong>. Ask the model to output the bounding box of <code><expr></code>. </li>
<li><strong>REG</strong>: <strong>Referring Expression Generation</strong>. Ask the model to generate a distinguishable description for RoI.</li>
<li><strong>Advanced</strong>: Use no predefined template. You can take full control of inputs.</li>
</ul>
</li>
<li><p><strong>Step 3.</strong> Ask Question. Use <boxes> placeholder if input has bounding box.</p>
</li>
</ul>
<p>The following step are needed <strong>only</strong> when input has bounding box.</p>
<ul>
<li><p><strong>Step 4.</strong> Draw Bounding Box in <code>Sketch Pad</code>.</p>
<p>Each bbox has a unique index, which will show at the corner of the bbox in <code>Parsed Sketch Pad</code>. </p>
</li>
<li><p><strong>Step 5.</strong> Assign the bbox index in <code>Boexs Seq</code> for each <boxes> placeholder. <code>Boexs Seq</code> <strong>take a 2-d list as input, each sub-list will replace the <boxes> placeholder in order.</strong></p>
</li>
</ul>
"""
)
with gr.Row():
with gr.Column():
gr.HTML(
"""
<h2>Video example</h2>
<p>a video example demonstrate how to input with boxes</p>
"""
)
video_file_url = os.path.join(os.path.dirname(__file__), f"assets/petal_20230711_153216_Compressed.mp4")
gr.Video(value=video_file_url, interactive=False, width=600)
with gr.Column():
boxes_seq_usage_file_url = f'file={os.path.join(os.path.dirname(__file__), f"assets/boxes_seq_explanation.jpg")}'
gr.HTML(
f"""
<h2>Boxes Seq Usage Explanation</h2>
<p>the [0,2] boxes will replace the first <boxes> placeholder. the [1] boxes will replace the second <boxes> placeholder.</p>
<p><img src="{boxes_seq_usage_file_url}"></p>
"""
)
gr.HTML(
"""
<h2>Demo</h2>
"""
)
with gr.Row():
with gr.Column():
chatbot = gr.Chatbot()
with gr.Accordion("Parameters", open=False):
with gr.Row():
do_sample = gr.Checkbox(value=False, label='do sampling', interactive=True)
max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="max length", interactive=True)
top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top P", interactive=True)
temperature = gr.Slider(0, 10, value=0.75, step=0.01, label="Temperature", interactive=True)
with gr.Column():
with gr.Row(variant='compact'):
sketch_pad = ImageMask(label="Sketch Pad", elem_id="img2img_image")
out_imagebox = gr.Image(label="Parsed Sketch Pad")
with gr.Column():
radio = gr.Radio(
["SpotCap", "GCoT", "Cap", "VQA", "REC", "REG", "Advanced"], label="Task Template", value='SpotCap',
)
with gr.Group():
template = gr.Textbox(label='Template', show_label=True, lines=1, interactive=False,
value='Provide a comprehensive description of the image <image> and specify the positions of any mentioned objects in square brackets.')
user_input = gr.Textbox(label='<question>', show_label=True, placeholder="Input...", lines=3,
value=None, visible=False, interactive=False)
boxes_seq = gr.Textbox(label='Boxes Seq', show_label=False, placeholder="Boxes Seq...", lines=1,
value=None, visible=False, interactive=False)
with gr.Row():
reset_all = gr.Button('Reset All')
reset_chat = gr.Button('Reset Chat')
reset_boxes = gr.Button('Reset Boxes')
submitBtn = gr.Button('Run')
##############################################
# reset state
##############################################
def reset_state_func():
ret = {
'ibs': ImageBoxState(),
'ds': prepare_interactive(model_args, preprocessor),
}
return ret
state = gr.State(reset_state_func)
example_image_boxes = gr.State(None)
##############################################
# reset dialogue
##############################################
def reset_all_func(state):
# clear_submit_temp_image(state)
new_state = reset_state_func()
boxes_seq = '[[0]]' if radio in ['REG', 'GC'] else None
return [new_state, None, None, None, boxes_seq, None]
reset_all.click(
fn=reset_all_func,
inputs=[state],
outputs=[state, sketch_pad, out_imagebox, user_input, boxes_seq, chatbot],
)
def reset_chat_func_step1(state, radio):
state['ibs'].reset_masks()
new_state = reset_state_func()
new_state['_reset_boxes_func_image'] = state['ibs'].image
boxes_seq = '[[0]]' if radio in ['REG', 'GC'] else None
return [new_state, None, None, None, boxes_seq, None]
def reset_chat_func_step2(state):
image = state['_reset_boxes_func_image']
del state['_reset_boxes_func_image']
return state, gr.update(value=image)
reset_chat.click(
fn=reset_chat_func_step1,
inputs=[state, radio],
outputs=[state, sketch_pad, out_imagebox, user_input, boxes_seq, chatbot],
).then(
fn=reset_chat_func_step2,
inputs=[state],
outputs=[state, sketch_pad],
)
##############################################
# reset boxes
##############################################
def reset_boxes_func_step1(state):
state['_reset_boxes_func_image'] = state['ibs'].image
state['ibs'].reset_masks()
return state, None
def reset_boxes_func_step2(state):
image = state['_reset_boxes_func_image']
del state['_reset_boxes_func_image']
return state, gr.update(value=image)
# reset boxes
reset_boxes.click(
fn=reset_boxes_func_step1,
inputs=[state],
outputs=[state, sketch_pad],
).then(
fn=reset_boxes_func_step2,
inputs=[state],
outputs=[state, sketch_pad],
)
##############################################
# examples
##############################################
def parese_example(image, boxes):
state = reset_state_func()
image = Image.open(image)
state['ibs'].update_image(image)
for box in boxes:
state['ibs'].update_box(box)
image = state['ibs'].draw_boxes()
_, path = tempfile.mkstemp(suffix='.jpg', dir=TEMP_FILE_DIR)
image.save(path)
return path, state
with gr.Column(visible=True) as example_SpotCap:
_examples_cap_raw = [
os.path.join(os.path.dirname(__file__), 'assets/proposal.jpg'),
os.path.join(os.path.dirname(__file__), 'assets/water_question.jpg'),
os.path.join(os.path.dirname(__file__), 'assets/fishing.jpg'),
os.path.join(os.path.dirname(__file__), 'assets/ball.jpg'),
os.path.join(os.path.dirname(__file__), 'assets/banana_phone.png'),
os.path.join(os.path.dirname(__file__), "assets/airplane.jpg"),
os.path.join(os.path.dirname(__file__), 'assets/baseball.png'),
]
_examples_cap_parsed = [[item, []] for item in _examples_cap_raw]
gr.Examples(
examples=_examples_cap_parsed,
inputs=[sketch_pad, example_image_boxes],
)
with gr.Column(visible=False) as example_vqabox:
_examples_vqabox_parsed = [
[
os.path.join(os.path.dirname(__file__), 'assets/proposal.jpg'),
'How is the person in the picture feeling<boxes>?',
'[[0]]',
[[785, 108, 1063, 844]],
],
[
os.path.join(os.path.dirname(__file__), 'assets/woman_door.jpg'),
"Which one is the woman's reflection in the mirror?<boxes>",
'[[0,1]]',
[(770, 138, 1024, 752), (469, 146, 732, 744)],
],
[
os.path.join(os.path.dirname(__file__), 'assets/man.jpg'),
"What is the person<boxes> scared of?",
'[[0]]',
[(148, 99, 576, 497)],
],
[
os.path.join(os.path.dirname(__file__), "assets/giraffes.jpg"),
"How many animals in the image?",
"",
[],
],
[
os.path.join(os.path.dirname(__file__), "assets/dog_selfcontrol.jpg"),
"Is this dog on a lead held by someone able to control it?",
"",
[],
],
[
os.path.join(os.path.dirname(__file__), 'assets/wet_paint1.jpg'),
'What does the board say?',
'',
[],
],
[
os.path.join(os.path.dirname(__file__), 'assets/g2.jpg'),
"What is unusual about the image?",
'',
[],
],
]
gr.Examples(
examples=_examples_vqabox_parsed,
inputs=[sketch_pad, user_input, boxes_seq, example_image_boxes],
)
with gr.Column(visible=False) as example_vqa:
_examples_vqa_parsed = [
[
os.path.join(os.path.dirname(__file__), 'assets/food-1898194_640.jpg'),
"QUESTION: Which of the following is meat?\nOPTION:\n(A) <boxes>\n(B) <boxes>\n(C) <boxes>\n(D) <boxes>",
'[[0],[1],[2],[3]]',
[[20, 216, 70, 343], [8, 3, 187, 127], [332, 386, 424, 494], [158, 518, 330, 605]],
],
[
os.path.join(os.path.dirname(__file__), 'assets/potato.jpg'),
"What color is this<boxes>?",
'[[0]]',
[[75, 408, 481, 802]],
],
[
os.path.join(os.path.dirname(__file__), 'assets/potato.jpg'),
"What color is this<boxes>?",
'[[0]]',
[[147, 274, 266, 437]],
],
[
os.path.join(os.path.dirname(__file__), 'assets/staircase-274614_640.jpg'),
"Is this a sea snail?",
'',
[],
],
[
os.path.join(os.path.dirname(__file__), 'assets/staircase-274614_640.jpg'),
"Is this shape like a sea snail?",
'',
[],
],
]
gr.Examples(
examples=_examples_vqa_parsed,
inputs=[sketch_pad, user_input, boxes_seq, example_image_boxes],
)
with gr.Column(visible=False) as example_rec:
gr.Examples(
examples=[
[
os.path.join(os.path.dirname(__file__), "assets/rec_bear.png"),
"a brown teddy bear with a blue bow",
[],
],
[
os.path.join(os.path.dirname(__file__), "assets/bear-792466_1280.jpg"),
"the teddy bear lay on the sofa edge",
[],
],
],
inputs=[sketch_pad, user_input, example_image_boxes],
)
with gr.Column(visible=False) as example_reg:
gr.Examples(
examples=[
[
os.path.join(os.path.dirname(__file__), "assets/fruits.jpg"),
"[[0]]",
[[833, 527, 646, 315]],
],
[
os.path.join(os.path.dirname(__file__), "assets/bearhat.png"),
"[[0]]",
[[48, 49, 216, 152]],
],
[
os.path.join(os.path.dirname(__file__), "assets/oven.jpg"),
"[[0]]",
[[1267, 314, 1383, 458]],
],
],
inputs=[sketch_pad, boxes_seq, example_image_boxes],
)
with gr.Column(visible=False) as example_adv:
gr.Examples(
examples=[
[
],
],
inputs=[sketch_pad, user_input, boxes_seq, example_image_boxes],
)
##############################################
# task template select
##############################################
def change_textbox(choice):
task_template = {
"SpotCap": "Please list every Reactions in this image <image> in detail, including the category of every objects with a unique ID and coordinates[x1,y1,x2,y2]. And their Reaction role in a reaction. The category include Structure and Text. The Reaction role include Reactants, Conditions and Products. And notice that Reactants and Products are usually linked by arrows.",
"Cap": "Summarize the content of the photo <image>.",
"GCoT": "With the help of the image <image>, can you clarify my question '<question>'? Also, explain the reasoning behind your answer, and don't forget to label the bounding boxes of the involved objects using square brackets.",
"VQA": "For this image <image>, I want a simple and direct answer to my question: <question>",
"REC": "Can you point out <expr> in the image <image> and provide the coordinates of its location?",
"REG": "For the given image <image>, can you provide a unique description of the area <boxes>?",
"GC": "Can you give me a description of the region <boxes> in image <image>?",
"Advanced": "<question>",
}
if choice in ['Advanced']:
template_update = gr.update(value=task_template[choice], visible=False)
else:
template_update = gr.update(value=task_template[choice], visible=True)
if choice in ['SpotCap', 'Cap']:
input_update = gr.update(value=None, visible=False, interactive=False)
boxes_seq_update = gr.update(show_label=False, value=None, visible=False, interactive=False)
elif choice in ['GCoT', 'VQA']:
input_update = gr.update(label='<question>', value=None, visible=True, interactive=True)
boxes_seq_update = gr.update(show_label=False, value=None, visible=True, interactive=True)
elif choice in ['Advanced']:
input_update = gr.update(label='Input', value=None, visible=True, interactive=True)
boxes_seq_update = gr.update(show_label=False, value=None, visible=True, interactive=True)
elif choice in ['REC']:
input_update = gr.update(label='<expr>', value=None, visible=True, interactive=True)
boxes_seq_update = gr.update(show_label=False, value=None, visible=False, interactive=False)
elif choice in ['REG', 'GC']:
input_update = gr.update(value=None, visible=False, interactive=False)
boxes_seq_update = gr.update(show_label=True, value='[[0]]', visible=True, interactive=True)
else:
raise gr.Error("What is this?!")
ret = [
template_update,
input_update,
boxes_seq_update,
gr.update(visible=True) if choice in ['SpotCap', 'Cap'] else gr.update(visible=False),
gr.update(visible=True) if choice in ['GCoT'] else gr.update(visible=False),
gr.update(visible=True) if choice in ['VQA'] else gr.update(visible=False),
gr.update(visible=True) if choice in ['REC'] else gr.update(visible=False),
gr.update(visible=True) if choice in ['REG', 'GC'] else gr.update(visible=False),
gr.update(visible=True) if choice in ['Advanced'] else gr.update(visible=False),
]
return ret
radio.change(
fn=change_textbox,
inputs=radio,
outputs=[template, user_input, boxes_seq, example_SpotCap, example_vqabox, example_vqa, example_rec, example_reg, example_adv],
)
##############################################
# draw
##############################################
def draw(sketch_pad: dict, state: dict, example_image_boxes):
if example_image_boxes is None:
image = sketch_pad['image']
image = Image.fromarray(image)
mask = sketch_pad['mask'][..., 0] if sketch_pad['mask'].ndim == 3 else sketch_pad['mask']
mask = binarize(mask)
ibs: ImageBoxState = state['ibs']
ibs.update_image(image)
ibs.update_mask(mask)
out_draw = ibs.draw_boxes()
ret = [out_draw, state, None, gr.update()]
return ret
else:
image = sketch_pad['image']
image = Image.fromarray(image)
state = reset_state_func()
ibs: ImageBoxState = state['ibs']
ibs.update_image(image)
for box in example_image_boxes:
ibs.update_box(box)
out_draw = ibs.draw_boxes()
ret = [out_draw, state, None, []]
return ret
sketch_pad.edit(
fn=draw,
inputs=[sketch_pad, state, example_image_boxes],
outputs=[out_imagebox, state, example_image_boxes, chatbot],
queue=False,
)
##############################################
# submit boxes
##############################################
def submit_step1(state, template, raw_user_input, boxes_seq, chatbot, do_sample, max_length, top_p, temperature):
if '<expr>' in template or '<question>' in template:
if not bool(raw_user_input):
raise gr.Error("say sth bro.")
if '<expr>' in template:
user_input = template.replace("<expr>", raw_user_input)
elif '<question>' in template:
user_input = template.replace("<question>", raw_user_input)
else:
user_input = template
def parse_boxes_seq(boxes_seq_str) -> List[List[int]]:
if not bool(boxes_seq_str):
return []
import ast
# validate
try:
parsed = ast.literal_eval(boxes_seq_str)
assert isinstance(parsed, (tuple, list)), \
f"boxes_seq should be a tuple/list but got {type(parsed)}"
for elem in parsed:
assert isinstance(elem, (tuple, list)), \
f"the elem in boxes_seq should be a tuple/list but got {type(elem)} for elem: {elem}"
assert len(elem) != 0, \
f"the elem in boxes_seq should not be empty."
for atom in elem:
assert isinstance(atom, int), \
f"the boxes_seq atom should be a int idx but got {type(atom)} for atom: {atom}"
except (AssertionError, SyntaxError) as e:
raise gr.Error(f"error when parse boxes_seq_str: {str(e)} for input: {boxes_seq_str}")
return parsed
boxes_seq = parse_boxes_seq(boxes_seq)
mm_state = state['ibs'].to_model()
ds = state['ds']
print(mm_state)
if 'image' in mm_state and bool(mm_state['image']):
# multimodal mode
if ds.image is not None and ds.image != mm_state['image']:
raise gr.Error("shikra only support single image conversation but got different images. maybe u want `Reset Dialogue`")
if ds.image != mm_state['image']:
ds.set_image(mm_state['image'])
def validate_message_box(user_input: str, boxes_seq: list, boxes_value: list):
if boxes_value and (not boxes_seq):
grWarning("has box drawn but set no boxes_seq")
if boxes_seq and (not boxes_value):
grWarning("ignored boxes_seq because no box drawn.")
boxes_placeholder_num = str(user_input).count('<boxes>')
if boxes_placeholder_num != len(boxes_seq):
raise gr.Error(f"<boxes> and boxes_seq num not match: {boxes_placeholder_num} {len(boxes_seq)}")
for boxes in boxes_seq:
for bidx in boxes:
if not (0 <= bidx < len(boxes_value)):
raise gr.Error(f"boxes_seq out of range: {boxes_seq} {len(boxes_value)}")
try:
validate_message_box(user_input, boxes_seq, mm_state['boxes'])
ds.append_message(role=ds.roles[0], message=user_input, boxes=mm_state['boxes'], boxes_seq=boxes_seq)
except Exception as e:
raise gr.Error(f"error when append message: {str(e)}")
else:
# text-only mode
if bool(boxes_seq):
grWarning("ignored boxes_seq in text-only mode")
boxes_placeholder_num = str(user_input).count('<boxes>')
if boxes_placeholder_num:
gr.Error("use <boxes> in input but no image found.")
ds.append_message(role=ds.roles[0], message=user_input)
model_inputs = ds.to_model_input()
model_inputs['images'] = model_inputs['images'].to(torch.float16)
print(f"model_inputs: {model_inputs}")
if do_sample:
gen_kwargs = dict(
use_cache=True,
do_sample=do_sample,
pad_token_id=tokenizer.pad_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=max_length,
top_p=top_p,
temperature=float(temperature),
)
else:
gen_kwargs = dict(
use_cache=True,
do_sample=do_sample,
pad_token_id=tokenizer.pad_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=max_length,
)
print(gen_kwargs)
input_ids = model_inputs['input_ids']
st_time = time.time()
with torch.inference_mode():
with torch.autocast(dtype=torch.float16, device_type='cuda'):
output_ids = model.generate(**model_inputs, **gen_kwargs)
print(f"done generated in {time.time() - st_time} seconds")
input_token_len = input_ids.shape[-1]
response = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
print(f"response: {response}")
# update new message
def build_boxes_image(text, image):
if image is None:
return text, None
print(text, image)
import re
colors = ['#ed7d31', '#5b9bd5', '#70ad47', '#7030a0', '#c00000', '#ffff00', "olive", "brown", "cyan",'#003366', '#b76e79', '#008080', '#8e44ad', '#ff6b6b','#dcd0ff', '#b7410e', '#bfff00', '#87ceeb', '#f1c40f']
pat = re.compile(r'\[\d(?:\.\d*)?(?:,\d(?:\.\d*)?){3}(?:;\d(?:\.\d*)?(?:,\d(?:\.\d*)?){3})*\]')
def extract_boxes(string):
ret = []
for bboxes_str in pat.findall(string):
bboxes = []
bbox_strs = bboxes_str.replace("(", "").replace(")", "").replace("[", "").replace("]", "").split(";")
for bbox_str in bbox_strs:
bbox = list(map(float, bbox_str.split(',')))
bboxes.append(bbox)
ret.append(bboxes)
return ret
extract_pred = extract_boxes(text)
boxes_to_draw = []
color_to_draw = []
for idx, boxes in enumerate(extract_pred):
color = colors[idx % len(colors)]
for box in boxes:
boxes_to_draw.append(de_norm_box_xyxy(box, w=image.width, h=image.height))
color_to_draw.append(color)
if not boxes_to_draw:
return text, None
res = draw_bounding_boxes(image=image, boxes=boxes_to_draw, colors=color_to_draw, width=8)
from torchvision.transforms import ToPILImage
res = ToPILImage()(res)
_, path = tempfile.mkstemp(suffix='.jpg', dir=TEMP_FILE_DIR)
res.save(path)
add_submit_temp_image(state, path)
# post process text color
print(text)
location_text = text
edit_text = list(text)
bboxes_str = pat.findall(text)
for idx in range(len(bboxes_str) - 1, -1, -1):
color = colors[idx % len(colors)]
boxes = bboxes_str[idx]
span = location_text.rfind(boxes), location_text.rfind(boxes) + len(boxes)
location_text = location_text[:span[0]]
edit_text[span[0]:span[1]] = f'<span style="color:{color}; font-weight:bold;">{boxes}</span>'
text = "".join(edit_text)
return text, path
def convert_one_round_message(conv, image=None):
text_query = f"{conv[0][0]}: {conv[0][1]}"
text_answer = f"{conv[1][0]}: {conv[1][1]}"
text_query, image_query = build_boxes_image(text_query, image)
text_answer, image_answer = build_boxes_image(text_answer, image)
new_chat = []
new_chat.append([parse_text(text_query), None])
if image_query is not None:
new_chat.append([(image_query,), None])
new_chat.append([None, parse_text(text_answer)])
if image_answer is not None:
new_chat.append([None, (image_answer,)])
return new_chat
ds.append_message(role=ds.roles[1], message=response)
conv = ds.to_gradio_chatbot_new_messages()
new_message = convert_one_round_message(conv, image=mm_state.get('image', None))
print(new_message)
state['_submit_new_message'] = new_message
return state, chatbot
def submit_step2(state, user_input, boxes_seq, chatbot):
if '_submit_new_message' in state:
chatbot.extend(state['_submit_new_message'])
del state['_submit_new_message']
return state, None, None, chatbot
return state, user_input, boxes_seq, chatbot
submitBtn.click(
submit_step1,
[state, template, user_input, boxes_seq, chatbot, do_sample, max_length, top_p, temperature],
[state, chatbot],
).then(
submit_step2,
[state, user_input, boxes_seq, chatbot],
[state, user_input, boxes_seq, chatbot],
)
print("launching...")
demo.queue().launch(server_name=args.server_name, server_port=args.server_port)
|