File size: 7,450 Bytes
3e1d9f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import sys
import copy
import warnings
import logging
from typing import Dict, Any, List

import PIL.Image
import torch
from PIL import Image
from transformers import LlamaTokenizer

from ..root import (
    FUNCTIONS,
    IMAGE_PLACEHOLDER,
    BaseImageProcessFunc,
    BaseConvProcessFunc,
    BaseTextProcessFunc,
)
from ...conversation import SeparatorStyle, Conversation

IGNORE_INDEX = -100
DEFAULT_IMAGE_TOKEN = IMAGE_PLACEHOLDER
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"

logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
    datefmt="%m/%d/%Y %H:%M:%S",
    handlers=[logging.StreamHandler(sys.stdout), ],
)


@FUNCTIONS.register_module()
class ShikraConvProcess(BaseConvProcessFunc):
    def __call__(self, raw_conv: List[Dict[str, Any]], preprocessor: Dict[str, Any], conv_template: Conversation) -> List[Dict[str, Any]]:
        conv_processor_cfg = preprocessor['conv']

        image_token_len = conv_processor_cfg['image_token_len']
        sep_image_conv_front = conv_processor_cfg.get('sep_image_conv_front', False)
        use_im_start_end = conv_processor_cfg.get('use_im_start_end', False)
        # assert DEFAULT_IMAGE_PATCH_TOKEN in preprocessor['text'].get_vocab()
        # if use_im_start_end:
        #     assert DEFAULT_IM_START_TOKEN in preprocessor['text'].get_vocab()
        #     assert DEFAULT_IM_END_TOKEN in preprocessor['text'].get_vocab()

        if sep_image_conv_front:
            raw_conv[0]['value'] = raw_conv[0]['value'].replace(DEFAULT_IMAGE_TOKEN, '').strip()
            raw_conv[0]['value'] = DEFAULT_IMAGE_TOKEN + conv_template.sep + conv_template.roles[0] + ": " + raw_conv[0]['value']
        for sentence in raw_conv:
            replace_token = DEFAULT_IMAGE_PATCH_TOKEN * image_token_len
            if use_im_start_end:
                replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN
            sentence["value"] = sentence["value"].replace(DEFAULT_IMAGE_TOKEN, replace_token)

        return raw_conv


@FUNCTIONS.register_module()
class ShikraTextProcess(BaseTextProcessFunc):

    def __call__(self, conv: Conversation, preprocessor: Dict[str, Any], mode: str, **tokenize_kwargs) -> Dict[str, Any]:
        tokenizer = preprocessor['text']
        assert isinstance(tokenizer, LlamaTokenizer), "only work for LlamaTokenizer"

        _truncation_size = tokenize_kwargs.pop('truncation_size', None)
        _kwargs = {'return_tensors': 'pt'}
        _kwargs.update(tokenize_kwargs)

        if conv.sep_style == SeparatorStyle.ADD_COLON_TWO:
            if mode in ['train']:
                ret = self.tk_conv_colon_two_train(conv, tokenizer, **_kwargs)
            else:
                ret = self.tk_conv_colon_two_eval(conv, tokenizer, **_kwargs)
        else:
            raise ValueError(f"unrecognized conv_style: {conv.sep_style}.\n the conv is {conv}")

        if _truncation_size is None:
            return ret
        if len(ret['input_ids']) <= _truncation_size:
            return ret

        origin_len = len(ret['input_ids'])
        ids_to_remove_num = origin_len - _truncation_size
        # truncation. should carefully not truncate <img_token>
        ids_should_not_remove = list(map(
            tokenizer.convert_tokens_to_ids,
            (DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_END_TOKEN, DEFAULT_IM_START_TOKEN)
        ))
        back_no_image = all(ids not in ids_should_not_remove for ids in ret['input_ids'][_truncation_size:])
        if back_no_image:
            tgt_ids = list(range(_truncation_size))
        else:
            ids_to_remove = set()
            for idx in range(origin_len - 1, -1, -1):
                if ret['input_ids'][idx] not in ids_should_not_remove:
                    ids_to_remove.add(idx)
                    if len(ids_to_remove) >= ids_to_remove_num:
                        break
            tgt_ids = [_ for _ in range(origin_len) if _ not in ids_to_remove]
        logger.warning(f"truncate sample size from {origin_len} to {len(tgt_ids)}.")
        assert len(tgt_ids) == _truncation_size, f"{len(tgt_ids)}, {_truncation_size}, {ret['input_ids'].tolist()}"
        truncated_ret = {k: v[tgt_ids] for k, v in ret.items()}
        return truncated_ret

    # noinspection PyMethodMayBeStatic
    def tk_conv_colon_two_train(self, conv, tokenizer, **kwargs):
        conversation = conv.get_prompt()
        input_ids = tokenizer([conversation, ], **kwargs).input_ids[0]
        target = copy.deepcopy(input_ids)
        assert conv.sep_style == SeparatorStyle.ADD_COLON_TWO
        # Mask targets
        sep = conv.sep + conv.roles[1] + ": "
        total_len = int(target.ne(tokenizer.pad_token_id).sum())
        rounds = conversation.split(conv.sep2)
        cur_len = 1
        target[:cur_len] = IGNORE_INDEX
        for i, rou in enumerate(rounds):
            if rou == "":
                break
            parts = rou.split(sep)
            if len(parts) != 2:
                break
            parts[0] += sep
            round_len = len(tokenizer(rou).input_ids)
            instruction_len = len(tokenizer(parts[0]).input_ids) - 2  # <s> <space>
            target[cur_len: cur_len + instruction_len] = IGNORE_INDEX
            cur_len += round_len
        target[cur_len:] = IGNORE_INDEX
        if cur_len < tokenizer.model_max_length:
            if cur_len != total_len:
                target[:] = IGNORE_INDEX
                warnings.warn(f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}. (ignored):\n{conversation}")
        return dict(
            input_ids=input_ids,
            attention_mask=input_ids.ne(tokenizer.pad_token_id),
            labels=target,
        )

    # noinspection PyMethodMayBeStatic
    def tk_conv_colon_two_eval(self, conv, tokenizer, **kwargs):
        assert len(conv.messages) >= 2
        # target = conv.messages[-1][-1]
        target = conv.get_prompt()

        conv.messages[-1][-1] = ""
        conversation = conv.get_prompt()
        input_ids = tokenizer([conversation, ], **kwargs).input_ids[0]

        target = tokenizer([target, ], add_special_tokens=False, **kwargs).input_ids[0]
        target[target == tokenizer.pad_token_id] = IGNORE_INDEX
        return dict(
            input_ids=input_ids,
            attention_mask=input_ids.ne(tokenizer.pad_token_id),
            labels=target,
        )


@FUNCTIONS.register_module()
class ShikraImageProcessor(BaseImageProcessFunc):
    def __call__(self, image: Image.Image, preprocessor: Dict[str, Any]) -> Dict[str, Any]:
        image_processor = preprocessor['image']

        if isinstance(image, (list, tuple)):
            image = image_processor.preprocess(image, return_tensors='pt')['pixel_values']
            assert False, 'Shikra not support MultiImage'
        elif isinstance(image, PIL.Image.Image):
            image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
        else:
            if hasattr(image_processor, 'crop_size'):
                crop_size = image_processor.crop_size
                height, width = crop_size['height'], crop_size['width']
            else:
                raise ValueError("got empty image. and don't know how to pad")
            image = torch.zeros(3, height, width)
        return {'image': image}