File size: 13,343 Bytes
3e1d9f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import re
import sys
import logging
import typing
from typing import List, Dict, Any, Tuple, Union

from ..utils.transform import norm_box_xyxy, norm_point_xyxy

from ..root import (
    FUNCTIONS,
    BaseTargetProcessFunc,
    BOXES_PLACEHOLDER,
    BOXES_PROCESSOR,
    POINTS_PLACEHOLDER,
)

from ...utils import smart_tokenizer_and_embedding_resize

logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
    datefmt="%m/%d/%Y %H:%M:%S",
    handlers=[logging.StreamHandler(sys.stdout), ],
)

Box = List[Union[float, int]]
Boxes = List[Box]
BoxesSeq = List[Boxes]


@FUNCTIONS.register_module()
class BoxFormatProcess(BaseTargetProcessFunc):
    def __call__(self, raw_conv: List[Dict[str, Any]], target: Dict[str, Any], preprocessor: Dict[str, Any],
                 multimage_mode=False) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
        box_formatter = preprocessor['target']['boxes']

        if multimage_mode:
            target = typing.cast(list, target)
            outer_normalized_boxes = []
            for tgt in target:
                normalized_boxes = []
                if tgt is not None and 'boxes' in tgt:
                    for box in tgt['boxes']:
                        normalized_boxes.append(
                            norm_box_xyxy(box, w=tgt['width'], h=tgt['height'])
                        )
                outer_normalized_boxes.append(normalized_boxes)
            normalized_boxes = outer_normalized_boxes
            outer_normalized_points = []
            for tgt in target:
                normalized_points = []
                if tgt is not None and 'boxes' in tgt:
                    for box in tgt['boxes']:
                        normalized_points.append(
                            norm_box_xyxy(box, w=tgt['width'], h=tgt['height'])
                        )
                outer_normalized_points.append(normalized_points)
            normalized_points = outer_normalized_points
        else:
            # normalize target
            normalized_boxes = []
            if target is not None and 'boxes' in target:
                for box in target['boxes']:
                    normalized_boxes.append(
                        norm_box_xyxy(box, w=target['width'], h=target['height'])
                    )
            normalized_points = []
            if target is not None and 'points' in target:
                for point in target['points']:
                    normalized_points.append(
                        norm_point_xyxy(point, w=target['width'], h=target['height'])
                    )

        # convert bboxes_seq
        for sentence in raw_conv:
            words: str = sentence['value']
            boxes_seq: List[List[int]] = sentence.get('boxes_seq', None)
            if boxes_seq is not None:
                # map box seq
                boxes_seq: List[Boxes] = map_obj(normalized_boxes, boxes_seq)
                # reformat; replace <boxes> placeholder
                converted = box_formatter(words, boxes_seq)
                words = converted
            points_seq: List[List[int]] = sentence.get('points_seq', None)
            if points_seq is not None:
                # map point seq
                points_seq: List[Boxes] = map_obj(normalized_points, points_seq)
                # reformat; replace <points> placeholder
                converted = box_formatter.call_on_point(words, points_seq)
                words = converted
            if boxes_seq is not None or points_seq is not None:
                sentence['raw_value'] = sentence['value']
                sentence['value'] = words
        return raw_conv, target


def map_obj(boxes_value: List[List[float]], boxes_seq: List[List[int]]) -> List[List[List[float]]]:
    """
    >>> normalized_boxes = [[0.1, 0.1, 0.1, 0.1], [0.2, 0.2, 0.2, 0.2], [0.3, 0.3, 0.3, 0.3]]
    >>> boxes_seq_ = [[3, 1], [2]]
    >>> var = map_obj(normalized_boxes, boxes_seq_)
    >>> assert var == [[[0.3,0.3,0.3,0.3], [0.1,0.1,0.1,0.1]], [0.2,0.2,0.2,0.2]]
    """
    try:
        ret = []
        for boxes in boxes_seq:
            boxes_ret = []
            for box_index in boxes:
                if isinstance(box_index, (list, tuple)):
                    boxes_ret.append(boxes_value[box_index[0]][box_index[1]])
                else:
                    boxes_ret.append(boxes_value[box_index])
            ret.append(boxes_ret)
        return ret
    except:
        raise SystemExit(f"error: map obj {boxes_value} {boxes_seq}")


class BoxFormatter:
    def __init__(self, bboxes_token=BOXES_PLACEHOLDER, points_token=POINTS_PLACEHOLDER):
        self.bboxes_token = bboxes_token
        self.points_token = points_token
        # normally the bboxes_token_pat is the same as bboxes_token if u not use some weird token
        self.bboxes_token_pat = re.compile(bboxes_token)
        self.points_token_pat = re.compile(points_token)

    def __call__(self, sentence: str, bboxes_seq: BoxesSeq) -> str:
        all_box = self.bboxes_token_pat.findall(sentence)
        assert len(all_box) == len(bboxes_seq), f"not match. sentence: {sentence}. boxes:{bboxes_seq}"
        if len(all_box) == 0:
            return sentence
        bboxes_strs = [self.format_box(bboxes) for bboxes in bboxes_seq]
        converted = sentence.replace(self.bboxes_token, '{}').format(*bboxes_strs)
        return converted

    def call_on_point(self, sentence: str, points_seq: BoxesSeq) -> str:
        all_box = self.points_token_pat.findall(sentence)
        assert len(all_box) == len(points_seq), f"not match. sentence: {sentence}. boxes:{points_seq}"
        if len(all_box) == 0:
            return sentence
        bboxes_strs = [self.format_point(bboxes) for bboxes in points_seq]
        converted = sentence.replace(self.points_token, '{}').format(*bboxes_strs)
        return converted

    def format_point(self, points) -> str:
        raise NotImplementedError

    def format_box(self, bboxes: Boxes) -> str:
        raise NotImplementedError

    def extract(self, string: str) -> List[Boxes]:
        raise NotImplementedError

    def extract_point(self, string: str) -> List[Boxes]:
        raise NotImplementedError


@BOXES_PROCESSOR.register_module()
class PlainBoxFormatter(BoxFormatter):

    def __init__(self, *args, precision=3, use_small_brackets=False, **kwargs):
        super().__init__(*args, **kwargs)
        self.precision = precision
        self.use_small_brackets = use_small_brackets

        small_brackets_pat = re.compile(r'\(\d(?:\.\d*)?(?:,\d(?:\.\d*)?){3}(?:;\d(?:\.\d*)?(?:,\d(?:\.\d*)?){3})*\)')
        small_brackets_point_pat = re.compile(r'\(\d(?:\.\d*)?(?:,\d(?:\.\d*)?)(?:;\d(?:\.\d*)?(?:,\d(?:\.\d*)?))*\)')

        middle_brackets_pat = re.compile(r'\[\d(?:\.\d*)?(?:,\d(?:\.\d*)?){3}(?:;\d(?:\.\d*)?(?:,\d(?:\.\d*)?){3})*\]')
        middle_brackets_point_pat = re.compile(r'\[\d(?:\.\d*)?(?:,\d(?:\.\d*)?)(?:;\d(?:\.\d*)?(?:,\d(?:\.\d*)?))*\]')

        self.pat = small_brackets_pat if use_small_brackets else middle_brackets_pat
        self.point_pat = small_brackets_point_pat if use_small_brackets else middle_brackets_point_pat

    def format_box(self, boxes: Boxes) -> str:
        box_strs = []
        for box in boxes:
            box_strs.append(','.join([f"{elem:.{self.precision}f}" for elem in box]))
        box_str = ';'.join(box_strs)
        if self.use_small_brackets:
            return "(" + box_str + ")"
        return "[" + box_str + "]"

    def format_point(self, points) -> str:
        return self.format_box(points)

    def extract(self, string: str) -> List[Boxes]:
        """ balabala<boxes>balabala<boxes> -> [boxes, boxes] """
        ret = []
        for bboxes_str in self.pat.findall(string):
            bboxes = []
            bbox_strs = bboxes_str.replace("(", "").replace(")", "").replace("[", "").replace("]", "").split(";")
            for bbox_str in bbox_strs:
                bbox = list(map(float, bbox_str.split(',')))
                bboxes.append(bbox)
            ret.append(bboxes)
        return ret

    def extract_point(self, string: str) -> List[Boxes]:
        """ balabala<boxes>balabala<boxes> -> [boxes, boxes] """
        ret = []
        for bboxes_str in self.point_pat.findall(string):
            bboxes = []
            bbox_strs = bboxes_str.replace("(", "").replace(")", "").replace("[", "").replace("]", "").split(";")
            for bbox_str in bbox_strs:
                bbox = list(map(float, bbox_str.split(',')))
                bboxes.append(bbox)
            ret.append(bboxes)
        return ret


@BOXES_PROCESSOR.register_module()
class TokenFormatter(BoxFormatter):

    def __init__(self, num_bins=1001):
        super().__init__()
        self.extract_box_pat = re.compile(r'<b_st><bin_\d*?>(?:<bin_\d*?>){3}(?:<b_sep><bin_\d*?>(?:<bin_\d*?>){3})*<b_ed>')
        self.extract_point_pat = re.compile(r'<p_st><bin_\d*?>(?:<bin_\d*?>){1}(?:<p_sep><bin_\d*?>(?:<bin_\d*?>){1})*<p_ed>')
        self.num_bins = num_bins
        self.use_sep = True
        self.use_begin_end = True

        self.box_begin = '<b_st>'
        self.box_sep = '<b_sep>'
        self.box_end = '<b_ed>'

        self.point_begin = '<p_st>'
        self.point_sep = '<p_sep>'
        self.point_end = '<p_ed>'

    def format_point(self, points) -> str:
        final_str = []
        for bbox in points:
            quant_x0 = "<bin_{}>".format(round((bbox[0] * (self.num_bins - 1))))
            quant_y0 = "<bin_{}>".format(round((bbox[1] * (self.num_bins - 1))))
            region_coord = "{} {}".format(quant_x0, quant_y0)
            final_str.append(region_coord)
        if self.use_sep:
            final_str = self.point_sep.join(final_str)
        else:
            final_str = ''.join(final_str)
        if self.use_begin_end:
            final_str = self.point_begin + final_str + self.point_end
        return final_str

    def format_box(self, bboxes: Boxes) -> str:
        final_str = []
        for bbox in bboxes:
            quant_x0 = "<bin_{}>".format(round((bbox[0] * (self.num_bins - 1))))
            quant_y0 = "<bin_{}>".format(round((bbox[1] * (self.num_bins - 1))))
            quant_x1 = "<bin_{}>".format(round((bbox[2] * (self.num_bins - 1))))
            quant_y1 = "<bin_{}>".format(round((bbox[3] * (self.num_bins - 1))))
            region_coord = "{} {} {} {}".format(quant_x0, quant_y0, quant_x1, quant_y1)
            final_str.append(region_coord)
        if self.use_sep:
            final_str = self.box_sep.join(final_str)
        else:
            final_str = ''.join(final_str)
        if self.use_begin_end:
            final_str = self.box_begin + final_str + self.box_end
        return final_str

    def extract(self, string: str) -> List[Boxes]:
        ret = []
        for bboxes_str in self.extract_box_pat.findall(string.replace(" ", "")):
            bboxes = []
            bbox_strs = bboxes_str.replace(self.box_begin, "").replace(self.box_end, "").split(self.box_sep)
            for bbox_str in bbox_strs:
                elems = list(map(int, re.findall(r'<bin_(\d*?)>', bbox_str)))
                bbox = [elem / (self.num_bins - 1) for elem in elems]
                bboxes.append(bbox)
            ret.append(bboxes)
        return ret

    def extract_point(self, string: str) -> List[Boxes]:
        ret = []
        for bboxes_str in self.extract_point_pat.findall(string):
            bboxes = []
            bbox_strs = bboxes_str.replace(self.point_begin, "").replace(self.point_end, "").split(self.point_sep)
            for bbox_str in bbox_strs:
                elems = list(map(int, re.findall(r'<bin_(\d*?)>', bbox_str)))
                bbox = [elem / (self.num_bins - 1) for elem in elems]
                bboxes.append(bbox)
            ret.append(bboxes)
        return ret

    def post_process_model_tokenizer(self, model, preprocessor, model_args, training_args):
        tokenizer = preprocessor['text']

        additional_special_tokens = [
            self.box_begin, self.box_sep, self.box_end,
            self.point_begin, self.point_sep, self.point_end,
        ]
        for i in range(self.num_bins):
            additional_special_tokens.append(f'<bin_{i}>')

        smart_tokenizer_and_embedding_resize(
            {'additional_special_tokens': additional_special_tokens},
            tokenizer,
            model,
        )
        return model, preprocessor


# FIXME: merge into load_pretrained
def prepare_target_processor(
        model,  # multimodal llm
        preprocessor: Dict[str, Any],
        model_args,
        training_args,
):
    if not hasattr(model_args, 'target_processor'):
        return model, preprocessor

    target_processor = {}
    if 'boxes' in model_args['target_processor']:
        boxes_cfg = model_args['target_processor']['boxes']
        boxes_processor = BOXES_PROCESSOR.build(boxes_cfg)
        target_processor['boxes'] = boxes_processor
        if hasattr(boxes_processor, "post_process_model_tokenizer"):
            model, preprocessor = boxes_processor.post_process_model_tokenizer(
                model, preprocessor, model_args, training_args,
            )
    preprocessor['target'] = target_processor
    return model, preprocessor