File size: 13,343 Bytes
3e1d9f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
import re
import sys
import logging
import typing
from typing import List, Dict, Any, Tuple, Union
from ..utils.transform import norm_box_xyxy, norm_point_xyxy
from ..root import (
FUNCTIONS,
BaseTargetProcessFunc,
BOXES_PLACEHOLDER,
BOXES_PROCESSOR,
POINTS_PLACEHOLDER,
)
from ...utils import smart_tokenizer_and_embedding_resize
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout), ],
)
Box = List[Union[float, int]]
Boxes = List[Box]
BoxesSeq = List[Boxes]
@FUNCTIONS.register_module()
class BoxFormatProcess(BaseTargetProcessFunc):
def __call__(self, raw_conv: List[Dict[str, Any]], target: Dict[str, Any], preprocessor: Dict[str, Any],
multimage_mode=False) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
box_formatter = preprocessor['target']['boxes']
if multimage_mode:
target = typing.cast(list, target)
outer_normalized_boxes = []
for tgt in target:
normalized_boxes = []
if tgt is not None and 'boxes' in tgt:
for box in tgt['boxes']:
normalized_boxes.append(
norm_box_xyxy(box, w=tgt['width'], h=tgt['height'])
)
outer_normalized_boxes.append(normalized_boxes)
normalized_boxes = outer_normalized_boxes
outer_normalized_points = []
for tgt in target:
normalized_points = []
if tgt is not None and 'boxes' in tgt:
for box in tgt['boxes']:
normalized_points.append(
norm_box_xyxy(box, w=tgt['width'], h=tgt['height'])
)
outer_normalized_points.append(normalized_points)
normalized_points = outer_normalized_points
else:
# normalize target
normalized_boxes = []
if target is not None and 'boxes' in target:
for box in target['boxes']:
normalized_boxes.append(
norm_box_xyxy(box, w=target['width'], h=target['height'])
)
normalized_points = []
if target is not None and 'points' in target:
for point in target['points']:
normalized_points.append(
norm_point_xyxy(point, w=target['width'], h=target['height'])
)
# convert bboxes_seq
for sentence in raw_conv:
words: str = sentence['value']
boxes_seq: List[List[int]] = sentence.get('boxes_seq', None)
if boxes_seq is not None:
# map box seq
boxes_seq: List[Boxes] = map_obj(normalized_boxes, boxes_seq)
# reformat; replace <boxes> placeholder
converted = box_formatter(words, boxes_seq)
words = converted
points_seq: List[List[int]] = sentence.get('points_seq', None)
if points_seq is not None:
# map point seq
points_seq: List[Boxes] = map_obj(normalized_points, points_seq)
# reformat; replace <points> placeholder
converted = box_formatter.call_on_point(words, points_seq)
words = converted
if boxes_seq is not None or points_seq is not None:
sentence['raw_value'] = sentence['value']
sentence['value'] = words
return raw_conv, target
def map_obj(boxes_value: List[List[float]], boxes_seq: List[List[int]]) -> List[List[List[float]]]:
"""
>>> normalized_boxes = [[0.1, 0.1, 0.1, 0.1], [0.2, 0.2, 0.2, 0.2], [0.3, 0.3, 0.3, 0.3]]
>>> boxes_seq_ = [[3, 1], [2]]
>>> var = map_obj(normalized_boxes, boxes_seq_)
>>> assert var == [[[0.3,0.3,0.3,0.3], [0.1,0.1,0.1,0.1]], [0.2,0.2,0.2,0.2]]
"""
try:
ret = []
for boxes in boxes_seq:
boxes_ret = []
for box_index in boxes:
if isinstance(box_index, (list, tuple)):
boxes_ret.append(boxes_value[box_index[0]][box_index[1]])
else:
boxes_ret.append(boxes_value[box_index])
ret.append(boxes_ret)
return ret
except:
raise SystemExit(f"error: map obj {boxes_value} {boxes_seq}")
class BoxFormatter:
def __init__(self, bboxes_token=BOXES_PLACEHOLDER, points_token=POINTS_PLACEHOLDER):
self.bboxes_token = bboxes_token
self.points_token = points_token
# normally the bboxes_token_pat is the same as bboxes_token if u not use some weird token
self.bboxes_token_pat = re.compile(bboxes_token)
self.points_token_pat = re.compile(points_token)
def __call__(self, sentence: str, bboxes_seq: BoxesSeq) -> str:
all_box = self.bboxes_token_pat.findall(sentence)
assert len(all_box) == len(bboxes_seq), f"not match. sentence: {sentence}. boxes:{bboxes_seq}"
if len(all_box) == 0:
return sentence
bboxes_strs = [self.format_box(bboxes) for bboxes in bboxes_seq]
converted = sentence.replace(self.bboxes_token, '{}').format(*bboxes_strs)
return converted
def call_on_point(self, sentence: str, points_seq: BoxesSeq) -> str:
all_box = self.points_token_pat.findall(sentence)
assert len(all_box) == len(points_seq), f"not match. sentence: {sentence}. boxes:{points_seq}"
if len(all_box) == 0:
return sentence
bboxes_strs = [self.format_point(bboxes) for bboxes in points_seq]
converted = sentence.replace(self.points_token, '{}').format(*bboxes_strs)
return converted
def format_point(self, points) -> str:
raise NotImplementedError
def format_box(self, bboxes: Boxes) -> str:
raise NotImplementedError
def extract(self, string: str) -> List[Boxes]:
raise NotImplementedError
def extract_point(self, string: str) -> List[Boxes]:
raise NotImplementedError
@BOXES_PROCESSOR.register_module()
class PlainBoxFormatter(BoxFormatter):
def __init__(self, *args, precision=3, use_small_brackets=False, **kwargs):
super().__init__(*args, **kwargs)
self.precision = precision
self.use_small_brackets = use_small_brackets
small_brackets_pat = re.compile(r'\(\d(?:\.\d*)?(?:,\d(?:\.\d*)?){3}(?:;\d(?:\.\d*)?(?:,\d(?:\.\d*)?){3})*\)')
small_brackets_point_pat = re.compile(r'\(\d(?:\.\d*)?(?:,\d(?:\.\d*)?)(?:;\d(?:\.\d*)?(?:,\d(?:\.\d*)?))*\)')
middle_brackets_pat = re.compile(r'\[\d(?:\.\d*)?(?:,\d(?:\.\d*)?){3}(?:;\d(?:\.\d*)?(?:,\d(?:\.\d*)?){3})*\]')
middle_brackets_point_pat = re.compile(r'\[\d(?:\.\d*)?(?:,\d(?:\.\d*)?)(?:;\d(?:\.\d*)?(?:,\d(?:\.\d*)?))*\]')
self.pat = small_brackets_pat if use_small_brackets else middle_brackets_pat
self.point_pat = small_brackets_point_pat if use_small_brackets else middle_brackets_point_pat
def format_box(self, boxes: Boxes) -> str:
box_strs = []
for box in boxes:
box_strs.append(','.join([f"{elem:.{self.precision}f}" for elem in box]))
box_str = ';'.join(box_strs)
if self.use_small_brackets:
return "(" + box_str + ")"
return "[" + box_str + "]"
def format_point(self, points) -> str:
return self.format_box(points)
def extract(self, string: str) -> List[Boxes]:
""" balabala<boxes>balabala<boxes> -> [boxes, boxes] """
ret = []
for bboxes_str in self.pat.findall(string):
bboxes = []
bbox_strs = bboxes_str.replace("(", "").replace(")", "").replace("[", "").replace("]", "").split(";")
for bbox_str in bbox_strs:
bbox = list(map(float, bbox_str.split(',')))
bboxes.append(bbox)
ret.append(bboxes)
return ret
def extract_point(self, string: str) -> List[Boxes]:
""" balabala<boxes>balabala<boxes> -> [boxes, boxes] """
ret = []
for bboxes_str in self.point_pat.findall(string):
bboxes = []
bbox_strs = bboxes_str.replace("(", "").replace(")", "").replace("[", "").replace("]", "").split(";")
for bbox_str in bbox_strs:
bbox = list(map(float, bbox_str.split(',')))
bboxes.append(bbox)
ret.append(bboxes)
return ret
@BOXES_PROCESSOR.register_module()
class TokenFormatter(BoxFormatter):
def __init__(self, num_bins=1001):
super().__init__()
self.extract_box_pat = re.compile(r'<b_st><bin_\d*?>(?:<bin_\d*?>){3}(?:<b_sep><bin_\d*?>(?:<bin_\d*?>){3})*<b_ed>')
self.extract_point_pat = re.compile(r'<p_st><bin_\d*?>(?:<bin_\d*?>){1}(?:<p_sep><bin_\d*?>(?:<bin_\d*?>){1})*<p_ed>')
self.num_bins = num_bins
self.use_sep = True
self.use_begin_end = True
self.box_begin = '<b_st>'
self.box_sep = '<b_sep>'
self.box_end = '<b_ed>'
self.point_begin = '<p_st>'
self.point_sep = '<p_sep>'
self.point_end = '<p_ed>'
def format_point(self, points) -> str:
final_str = []
for bbox in points:
quant_x0 = "<bin_{}>".format(round((bbox[0] * (self.num_bins - 1))))
quant_y0 = "<bin_{}>".format(round((bbox[1] * (self.num_bins - 1))))
region_coord = "{} {}".format(quant_x0, quant_y0)
final_str.append(region_coord)
if self.use_sep:
final_str = self.point_sep.join(final_str)
else:
final_str = ''.join(final_str)
if self.use_begin_end:
final_str = self.point_begin + final_str + self.point_end
return final_str
def format_box(self, bboxes: Boxes) -> str:
final_str = []
for bbox in bboxes:
quant_x0 = "<bin_{}>".format(round((bbox[0] * (self.num_bins - 1))))
quant_y0 = "<bin_{}>".format(round((bbox[1] * (self.num_bins - 1))))
quant_x1 = "<bin_{}>".format(round((bbox[2] * (self.num_bins - 1))))
quant_y1 = "<bin_{}>".format(round((bbox[3] * (self.num_bins - 1))))
region_coord = "{} {} {} {}".format(quant_x0, quant_y0, quant_x1, quant_y1)
final_str.append(region_coord)
if self.use_sep:
final_str = self.box_sep.join(final_str)
else:
final_str = ''.join(final_str)
if self.use_begin_end:
final_str = self.box_begin + final_str + self.box_end
return final_str
def extract(self, string: str) -> List[Boxes]:
ret = []
for bboxes_str in self.extract_box_pat.findall(string.replace(" ", "")):
bboxes = []
bbox_strs = bboxes_str.replace(self.box_begin, "").replace(self.box_end, "").split(self.box_sep)
for bbox_str in bbox_strs:
elems = list(map(int, re.findall(r'<bin_(\d*?)>', bbox_str)))
bbox = [elem / (self.num_bins - 1) for elem in elems]
bboxes.append(bbox)
ret.append(bboxes)
return ret
def extract_point(self, string: str) -> List[Boxes]:
ret = []
for bboxes_str in self.extract_point_pat.findall(string):
bboxes = []
bbox_strs = bboxes_str.replace(self.point_begin, "").replace(self.point_end, "").split(self.point_sep)
for bbox_str in bbox_strs:
elems = list(map(int, re.findall(r'<bin_(\d*?)>', bbox_str)))
bbox = [elem / (self.num_bins - 1) for elem in elems]
bboxes.append(bbox)
ret.append(bboxes)
return ret
def post_process_model_tokenizer(self, model, preprocessor, model_args, training_args):
tokenizer = preprocessor['text']
additional_special_tokens = [
self.box_begin, self.box_sep, self.box_end,
self.point_begin, self.point_sep, self.point_end,
]
for i in range(self.num_bins):
additional_special_tokens.append(f'<bin_{i}>')
smart_tokenizer_and_embedding_resize(
{'additional_special_tokens': additional_special_tokens},
tokenizer,
model,
)
return model, preprocessor
# FIXME: merge into load_pretrained
def prepare_target_processor(
model, # multimodal llm
preprocessor: Dict[str, Any],
model_args,
training_args,
):
if not hasattr(model_args, 'target_processor'):
return model, preprocessor
target_processor = {}
if 'boxes' in model_args['target_processor']:
boxes_cfg = model_args['target_processor']['boxes']
boxes_processor = BOXES_PROCESSOR.build(boxes_cfg)
target_processor['boxes'] = boxes_processor
if hasattr(boxes_processor, "post_process_model_tokenizer"):
model, preprocessor = boxes_processor.post_process_model_tokenizer(
model, preprocessor, model_args, training_args,
)
preprocessor['target'] = target_processor
return model, preprocessor
|