Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
""" | |
Transforms and data augmentation for both image + bbox. | |
""" | |
import random | |
import math | |
import PIL | |
import torch | |
import torchvision.transforms as T | |
import torchvision.transforms.functional as F | |
import numpy as np | |
def box_cxcywh_to_xyxy(x): | |
x_c, y_c, w, h = x.unbind(-1) | |
b = [(x_c - 0.5 * w), (y_c - 0.5 * h), | |
(x_c + 0.5 * w), (y_c + 0.5 * h)] | |
return torch.stack(b, dim=-1) | |
def box_xyxy_to_cxcywh(x): | |
x0, y0, x1, y1 = x.unbind(-1) | |
b = [(x0 + x1) / 2, (y0 + y1) / 2, | |
(x1 - x0), (y1 - y0)] | |
return torch.stack(b, dim=-1) | |
def crop(image, target, region): | |
cropped_image = F.crop(image, *region) | |
target = target.copy() | |
i, j, h, w = region | |
# should we do something wrt the original size? | |
# target["size"] = torch.tensor([h, w]) | |
fields = ["labels", "area"] | |
if "boxes" in target: | |
boxes = target["boxes"] | |
max_size = torch.as_tensor([w, h], dtype=torch.float32) | |
cropped_boxes = boxes - torch.as_tensor([j, i, j, i]) | |
cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size) | |
cropped_boxes = cropped_boxes.clamp(min=0) | |
area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1) | |
target["boxes"] = cropped_boxes.reshape(-1, 4) | |
target["area"] = area | |
fields.append("boxes") | |
# remove elements for which the boxes or masks that have zero area | |
# if "boxes" in target or "masks" in target: | |
# # favor boxes selection when defining which elements to keep | |
# # this is compatible with previous implementation | |
# if "boxes" in target: | |
# cropped_boxes = target['boxes'].reshape(-1, 2, 2) | |
# keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1) | |
# else: | |
# keep = target['masks'].flatten(1).any(1) | |
# | |
# for field in fields: | |
# target[field] = target[field][keep] | |
return cropped_image, target | |
def hflip(image, target): | |
flipped_image = F.hflip(image) | |
w, h = image.size | |
target = target.copy() | |
if "boxes" in target: | |
boxes = target["boxes"] | |
boxes = boxes[:, [2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) + torch.as_tensor([w, 0, w, 0]) | |
target["boxes"] = boxes | |
return flipped_image, target | |
def rotate90(image, target): | |
rotated_image = image.rotate(90, expand=1) | |
w, h = rotated_image.size | |
target = target.copy() | |
if "boxes" in target: | |
boxes = target["boxes"] | |
boxes = boxes[:, [1, 2, 3, 0]] * torch.as_tensor([1, -1, 1, -1]) + torch.as_tensor([0, h, 0, h]) | |
target["boxes"] = boxes | |
return rotated_image, target | |
def resize(image, target, size, max_size=None): | |
# size can be min_size (scalar) or (w, h) tuple | |
def get_size_with_aspect_ratio(image_size, size, max_size=None): | |
w, h = image_size | |
if max_size is not None: | |
min_original_size = float(min((w, h))) | |
max_original_size = float(max((w, h))) | |
if max_original_size / min_original_size * size > max_size: | |
size = int(round(max_size * min_original_size / max_original_size)) | |
if (w <= h and w == size) or (h <= w and h == size): | |
return (h, w) | |
if w < h: | |
ow = size | |
oh = int(size * h / w) | |
else: | |
oh = size | |
ow = int(size * w / h) | |
return (oh, ow) | |
def get_size(image_size, size, max_size=None): | |
if isinstance(size, (list, tuple)): | |
return size[::-1] | |
else: | |
return get_size_with_aspect_ratio(image_size, size, max_size) | |
size = get_size(image.size, size, max_size) | |
rescaled_image = F.resize(image, size) | |
if target is None: | |
return rescaled_image, None | |
ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size)) | |
ratio_width, ratio_height = ratios | |
target = target.copy() | |
if "boxes" in target: | |
boxes = target["boxes"] | |
scaled_boxes = boxes * torch.as_tensor([ratio_width, ratio_height, ratio_width, ratio_height]) | |
target["boxes"] = scaled_boxes | |
if "area" in target: | |
area = target["area"] | |
scaled_area = area * (ratio_width * ratio_height) | |
target["area"] = scaled_area | |
return rescaled_image, target | |
def pad(image, target, padding): | |
# assumes that we only pad on the bottom right corners | |
padded_image = F.pad(image, (0, 0, padding[0], padding[1])) | |
if target is None: | |
return padded_image, None | |
target = target.copy() | |
# should we do something wrt the original size? | |
target["size"] = torch.tensor(padded_image.size[::-1]) | |
if "masks" in target: | |
target['masks'] = torch.nn.functional.pad(target['masks'], (0, padding[0], 0, padding[1])) | |
return padded_image, target | |
class RandomCrop(object): | |
def __init__(self, size): | |
self.size = size | |
def __call__(self, img, target): | |
region = T.RandomCrop.get_params(img, self.size) | |
return crop(img, target, region) | |
class RandomSizeCrop(object): | |
def __init__(self, min_size: int, max_size: int): | |
self.min_size = min_size | |
self.max_size = max_size | |
def __call__(self, img: PIL.Image.Image, target: dict): | |
w = random.randint(self.min_size, min(img.width, self.max_size)) | |
h = random.randint(self.min_size, min(img.height, self.max_size)) | |
region = T.RandomCrop.get_params(img, [h, w]) | |
return crop(img, target, region) | |
class CenterCrop(object): | |
def __init__(self, size): | |
self.size = size | |
def __call__(self, img, target): | |
image_width, image_height = img.size | |
crop_height, crop_width = self.size | |
crop_top = int(round((image_height - crop_height) / 2.)) | |
crop_left = int(round((image_width - crop_width) / 2.)) | |
return crop(img, target, (crop_top, crop_left, crop_height, crop_width)) | |
class RandomReactionCrop(object): | |
def __init__(self): | |
pass | |
def __call__(self, img, target): | |
w, h = img.size | |
boxes = target["boxes"] | |
x_avail = [1] * w | |
y_avail = [1] * h | |
for reaction in target['reactions']: | |
ids = reaction['reactants'] + reaction['conditions'] + reaction['products'] | |
rboxes = boxes[ids].round().int() | |
rmin, _ = rboxes.min(dim=0) | |
rmax, _ = rboxes.max(dim=0) | |
x1, x2 = (rmin[0].item(), rmax[2].item()) | |
for i in range(x1, x2): | |
x_avail[i] = 0 | |
y1, y2 = (rmin[1].item(), rmax[3].item()) | |
for i in range(y1, y2): | |
y_avail[i] = 0 | |
def sample_from_avail(w): | |
spans = [] | |
left, right = 0, 0 | |
while right < len(w): | |
while right < len(w) and w[left] == w[right]: | |
right += 1 | |
if w[left] == 1: | |
spans.append((left, right)) | |
left, right = right + 1, right + 1 | |
if w[0] == 0: | |
spans = [(0, 0)] + spans | |
if w[-1] == 0: | |
spans = spans + [(len(w), len(w))] | |
if len(spans) < 2: | |
w1 = random.randint(0, len(w)) | |
w2 = random.randint(0, len(w)) | |
else: | |
spans = random.sample(spans, 2) | |
w1 = random.randint(*spans[0]) | |
w2 = random.randint(*spans[1]) | |
return min(w1, w2), max(w1, w2) | |
x1, x2 = sample_from_avail(x_avail) | |
y1, y2 = sample_from_avail(y_avail) | |
region = (y1, x1, y2-y1, x2-x1) | |
if x2-x1 < 30 or y2-y1 < 30: | |
# Cropped region too small | |
return img, target | |
else: | |
return crop(img, target, region) | |
class RandomHorizontalFlip(object): | |
def __init__(self, p=0.5): | |
self.p = p | |
def __call__(self, img, target): | |
if random.random() < self.p: | |
return hflip(img, target) | |
return img, target | |
class RandomRotate(object): | |
def __init__(self, p=0.5): | |
self.p = p | |
def __call__(self, img, target): | |
if random.random() < self.p: | |
return rotate90(img, target) | |
return img, target | |
class RandomResize(object): | |
def __init__(self, sizes, max_size=None): | |
assert isinstance(sizes, (list, tuple)) | |
self.sizes = sizes | |
self.max_size = max_size | |
def __call__(self, img, target=None): | |
size = random.choice(self.sizes) | |
return resize(img, target, size, self.max_size) | |
class RandomPad(object): | |
def __init__(self, max_pad): | |
self.max_pad = max_pad | |
def __call__(self, img, target): | |
pad_x = random.randint(0, self.max_pad) | |
pad_y = random.randint(0, self.max_pad) | |
return pad(img, target, (pad_x, pad_y)) | |
class RandomSelect(object): | |
""" | |
Randomly selects between transforms1 and transforms2, | |
with probability p for transforms1 and (1 - p) for transforms2 | |
""" | |
def __init__(self, transforms1, transforms2, p=0.5): | |
self.transforms1 = transforms1 | |
self.transforms2 = transforms2 | |
self.p = p | |
def __call__(self, img, target): | |
if random.random() < self.p: | |
return self.transforms1(img, target) | |
return self.transforms2(img, target) | |
class Resize(object): | |
def __init__(self, size): | |
assert isinstance(size, (list, tuple)) | |
self.size = size | |
def __call__(self, img, target=None): | |
return resize(img, target, self.size) | |
class ToTensor(object): | |
def __call__(self, img, target): | |
return F.to_tensor(img), target | |
class RandomErasing(object): | |
def __init__(self, *args, **kwargs): | |
self.eraser = T.RandomErasing(*args, **kwargs) | |
def __call__(self, img, target): | |
return self.eraser(img), target | |
class Normalize(object): | |
def __init__(self, mean, std, debug=False): | |
self.mean = mean | |
self.std = std | |
self.debug = debug | |
def __call__(self, image, target=None): | |
if not self.debug: | |
image = F.normalize(image, mean=self.mean, std=self.std) | |
if target is None: | |
return image, None | |
target = target.copy() | |
h, w = image.shape[-2:] | |
if "boxes" in target: | |
boxes = target["boxes"] | |
boxes = boxes / torch.tensor([w, h, w, h], dtype=torch.float32) | |
target["boxes"] = boxes.clamp(min=0, max=1) | |
return image, target | |
class Compose(object): | |
def __init__(self, transforms): | |
self.transforms = transforms | |
def __call__(self, image, target=None): | |
for t in self.transforms: | |
image, target = t(image, target) | |
return image, target | |
def __repr__(self): | |
format_string = self.__class__.__name__ + "(" | |
for t in self.transforms: | |
format_string += "\n" | |
format_string += " {0}".format(t) | |
format_string += "\n)" | |
return format_string | |
class LargeScaleJitter(object): | |
""" | |
implementation of large scale jitter from copy_paste | |
""" | |
def __init__(self, output_size=1333, aug_scale_min=0.3, aug_scale_max=2.0): | |
self.desired_size = output_size | |
self.aug_scale_min = aug_scale_min | |
self.aug_scale_max = aug_scale_max | |
self.random = (aug_scale_min != 1) or (aug_scale_max != 1) | |
def rescale_target(self, scaled_size, image_size, target): | |
# compute rescaled targets | |
image_scale = scaled_size / image_size | |
ratio_height, ratio_width = image_scale | |
target = target.copy() | |
if "boxes" in target: | |
boxes = target["boxes"] | |
scaled_boxes = boxes * torch.as_tensor([ratio_width, ratio_height, ratio_width, ratio_height]) | |
target["boxes"] = scaled_boxes | |
if "area" in target: | |
area = target["area"] | |
scaled_area = area * (ratio_width * ratio_height) | |
target["area"] = scaled_area | |
return target | |
def crop_target(self, region, target): | |
i, j, h, w = region | |
fields = ["labels", "area"] | |
target = target.copy() | |
if "boxes" in target: | |
boxes = target["boxes"] | |
max_size = torch.as_tensor([w, h], dtype=torch.float32) | |
cropped_boxes = boxes - torch.as_tensor([j, i, j, i]) | |
cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size) | |
cropped_boxes = cropped_boxes.clamp(min=0) | |
area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1) | |
target["boxes"] = cropped_boxes.reshape(-1, 4) | |
target["area"] = area | |
fields.append("boxes") | |
# Do not remove the boxes with zero area. Tokenizer does it instead. | |
# if "boxes" in target: | |
# # favor boxes selection when defining which elements to keep | |
# # this is compatible with previous implementation | |
# cropped_boxes = target['boxes'].reshape(-1, 2, 2) | |
# keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1) | |
# for field in fields: | |
# target[field] = target[field][keep] | |
return target | |
def pad_target(self, padding, target): | |
# padding: left, top, right, bottom | |
target = target.copy() | |
if "boxes" in target: | |
left, top, right, bottom = padding | |
target["boxes"][:, 0::2] += left | |
target["boxes"][:, 1::2] += top | |
return target | |
def __call__(self, image, target=None): | |
image_size = image.size | |
image_size = torch.tensor(image_size[::-1]) | |
if target is None: | |
target = {} | |
# out_desired_size = (self.desired_size * image_size / max(image_size)).round().int() | |
out_desired_size = torch.tensor([self.desired_size, self.desired_size]) | |
random_scale = torch.rand(1) * (self.aug_scale_max - self.aug_scale_min) + self.aug_scale_min | |
scaled_size = (random_scale * self.desired_size).round() | |
scale = torch.minimum(scaled_size / image_size[0], scaled_size / image_size[1]) | |
scaled_size = (image_size * scale).round().int().clamp(min=1) | |
scaled_image = F.resize(image, scaled_size.tolist()) | |
if target is not None: | |
target = self.rescale_target(scaled_size, image_size, target) | |
# randomly crop or pad images | |
delta = scaled_size - out_desired_size | |
output_image = scaled_image | |
w, h = scaled_image.size | |
target["scale"] = [w / self.desired_size, h / self.desired_size] | |
if delta.lt(0).any(): | |
padding = torch.clamp(-delta, min=0) | |
if self.random: | |
padding1 = (torch.rand(1) * padding).round().int() | |
padding2 = padding - padding1 | |
padding = padding1.tolist()[::-1] + padding2.tolist()[::-1] | |
else: | |
padding = [0, 0] + padding.tolist()[::-1] | |
output_image = F.pad(output_image, padding, 255) | |
# output_image = F.pad(scaled_image, [0, 0, padding[1].item(), padding[0].item()]) | |
if target is not None: | |
target = self.pad_target(padding, target) | |
if delta.gt(0).any(): | |
# Selects non-zero random offset (x, y) if scaled image is larger than desired_size. | |
max_offset = torch.clamp(delta, min=0) | |
if self.random: | |
offset = (max_offset * torch.rand(2)).floor().int() | |
else: | |
offset = torch.zeros(2) | |
region = (offset[0].item(), offset[1].item(), out_desired_size[0].item(), out_desired_size[1].item()) | |
output_image = F.crop(output_image, *region) | |
if target is not None: | |
target = self.crop_target(region, target) | |
return output_image, target | |
class RandomDistortion(object): | |
""" | |
Distort image w.r.t hue, saturation and exposure. | |
""" | |
def __init__(self, brightness=0, contrast=0, saturation=0, hue=0, prob=0.5): | |
self.prob = prob | |
self.tfm = T.ColorJitter(brightness, contrast, saturation, hue) | |
def __call__(self, img, target=None): | |
if np.random.random() < self.prob: | |
return self.tfm(img), target | |
else: | |
return img, target | |