Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
""" | |
Pix2Seq Transformer class. | |
Copy-paste from torch.nn.Transformer with modifications: | |
* positional encodings are passed in MHattention | |
* extra LN at the end of encoder is removed | |
* decoder returns a stack of activations from all decoding layers | |
""" | |
import copy | |
from typing import Optional, List | |
import torch | |
import torch.nn.functional as F | |
from torch import nn, Tensor | |
from .attention_layer import Attention | |
from transformers import EncoderDecoderConfig, EncoderDecoderModel, AutoConfig, BertConfig | |
class Transformer(nn.Module): | |
def __init__(self, d_model=512, nhead=8, num_encoder_layers=6, | |
num_decoder_layers=6, dim_feedforward=1024, dropout=0.1, | |
activation="relu", normalize_before=False, num_vocal=2094, | |
pred_eos=False, tokenizer=None): | |
super().__init__() | |
encoder_layer = TransformerEncoderLayer( | |
d_model, nhead, dim_feedforward, dropout, activation, normalize_before) | |
encoder_norm = nn.LayerNorm(d_model) if normalize_before else None | |
self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm) | |
decoder_layer = TransformerDecoderLayer( | |
d_model, nhead, dim_feedforward, dropout, activation, normalize_before) | |
decoder_norm = nn.LayerNorm(d_model) | |
self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm) | |
self._reset_parameters() | |
self.num_vocal = num_vocal | |
self.vocal_classifier = nn.Linear(d_model, num_vocal) | |
self.det_embed = nn.Embedding(1, d_model) | |
self.vocal_embed = nn.Embedding(self.num_vocal - 2, d_model) | |
self.pred_eos = pred_eos | |
self.d_model = d_model | |
self.nhead = nhead | |
self.num_decoder_layers = num_decoder_layers | |
self.tokenizer = tokenizer | |
def _reset_parameters(self): | |
for p in self.parameters(): | |
if p.dim() > 1: | |
nn.init.xavier_uniform_(p) | |
def forward(self, src, input_seq, mask, pos_embed, max_len=500): | |
""" | |
Args: | |
src: shape[B, C, H, W] | |
input_seq: shape[B, 501, C] for training and shape[B, 1, C] for inference | |
mask: shape[B, H, W] | |
pos_embed: shape[B, C, H, W] | |
""" | |
# flatten NxCxHxW to HWxNxC | |
bs = src.shape[0] | |
src = src.flatten(2).permute(2, 0, 1) | |
mask = mask.flatten(1) | |
pos_embed = pos_embed.flatten(2).permute(2, 0, 1) | |
memory = self.encoder(src, src_key_padding_mask=mask, pos=pos_embed) | |
pre_kv = [torch.as_tensor([[], []], device=memory.device) | |
for _ in range(self.num_decoder_layers)] | |
if self.training: | |
input_seq = input_seq.clamp(max=self.num_vocal - 3) | |
input_embed = torch.cat( | |
[self.det_embed.weight.unsqueeze(0).repeat(bs, 1, 1), | |
self.vocal_embed(input_seq)], dim=1) | |
input_embed = input_embed.transpose(0, 1) | |
num_seq = input_embed.shape[0] | |
self_attn_mask = torch.triu(torch.ones((num_seq, num_seq)), diagonal=1).bool().to(input_embed.device) | |
hs, pre_kv = self.decoder( | |
input_embed, | |
memory, | |
memory_key_padding_mask=mask, | |
pos=pos_embed, | |
pre_kv_list=pre_kv, | |
self_attn_mask=self_attn_mask) | |
# hs: N x B x D | |
pred_seq_logits = self.vocal_classifier(hs.transpose(0, 1)) | |
return pred_seq_logits | |
else: | |
end = torch.zeros(bs).bool().to(memory.device) | |
end_lens = torch.zeros(bs).long().to(memory.device) | |
input_embed = self.det_embed.weight.unsqueeze(0).repeat(bs, 1, 1).transpose(0, 1) | |
states, pred_token = [None] * bs, [None] * bs | |
pred_seq, pred_scores = [], [] | |
for seq_i in range(max_len): | |
hs, pre_kv = self.decoder( | |
input_embed, | |
memory, | |
memory_key_padding_mask=mask, | |
pos=pos_embed, | |
pre_kv_list=pre_kv) | |
# hs: N x B x D | |
logits = self.vocal_classifier(hs.transpose(0, 1)) | |
log_probs = F.log_softmax(logits, dim=-1) | |
if self.tokenizer.output_constraint: | |
states, output_masks = self.tokenizer.update_states_and_masks(states, pred_token) | |
output_masks = torch.tensor(output_masks, device=logits.device).unsqueeze(1) | |
log_probs.masked_fill_(output_masks, -10000) | |
if not self.pred_eos: | |
log_probs[:, :, self.tokenizer.EOS_ID] = -10000 | |
score, pred_token = log_probs.max(dim=-1) | |
pred_seq.append(pred_token) | |
pred_scores.append(score) | |
if self.pred_eos: | |
stop_state = pred_token.squeeze(1).eq(self.tokenizer.EOS_ID) | |
end_lens += seq_i * (~end * stop_state) | |
end = (stop_state + end).bool() | |
if end.all() and seq_i > 4: | |
break | |
token = log_probs[:, :, :self.num_vocal - 2].argmax(dim=-1) | |
input_embed = self.vocal_embed(token.transpose(0, 1)) | |
if not self.pred_eos: | |
end_lens = end_lens.fill_(max_len) | |
pred_seq = torch.cat(pred_seq, dim=1) | |
pred_seq = [seq[:end_idx] for end_idx, seq in zip(end_lens, pred_seq)] | |
pred_scores = torch.cat(pred_scores, dim=1) | |
pred_scores = [scores[:end_idx] for end_idx, scores in zip(end_lens, pred_scores)] | |
return pred_seq, pred_scores | |
class TransformerEncoder(nn.Module): | |
def __init__(self, encoder_layer, num_layers, norm=None): | |
super().__init__() | |
self.layers = _get_clones(encoder_layer, num_layers) | |
self.num_layers = num_layers | |
self.norm = norm | |
def forward(self, src, | |
src_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None): | |
output = src | |
for layer in self.layers: | |
output = layer(output, src_key_padding_mask=src_key_padding_mask, pos=pos) | |
if self.norm is not None: | |
output = self.norm(output) | |
return output | |
class TransformerDecoder(nn.Module): | |
def __init__(self, decoder_layer, num_layers, norm=None): | |
super().__init__() | |
self.layers = _get_clones(decoder_layer, num_layers) | |
self.num_layers = num_layers | |
self.norm = norm | |
def forward(self, tgt, memory, memory_key_padding_mask, pos, pre_kv_list=None, self_attn_mask=None): | |
output = tgt | |
cur_kv_list = [] | |
for layer, pre_kv in zip(self.layers, pre_kv_list): | |
output, cur_kv = layer( | |
output, | |
memory, | |
memory_key_padding_mask=memory_key_padding_mask, | |
pos=pos, | |
self_attn_mask=self_attn_mask, | |
pre_kv=pre_kv) | |
cur_kv_list.append(cur_kv) | |
if self.norm is not None: | |
output = self.norm(output) | |
return output, cur_kv_list | |
class TransformerEncoderLayer(nn.Module): | |
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, | |
activation="relu", normalize_before=False): | |
super().__init__() | |
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) | |
# Implementation of Feedforward model | |
self.linear1 = nn.Linear(d_model, dim_feedforward) | |
self.dropout = nn.Dropout(dropout) | |
self.linear2 = nn.Linear(dim_feedforward, d_model) | |
self.norm1 = nn.LayerNorm(d_model) | |
self.norm2 = nn.LayerNorm(d_model) | |
self.dropout1 = nn.Dropout(dropout) | |
self.dropout2 = nn.Dropout(dropout) | |
self.activation = _get_activation_fn(activation) | |
self.normalize_before = normalize_before | |
def with_pos_embed(self, tensor, pos: Optional[Tensor]): | |
return tensor if pos is None else tensor + pos | |
def forward_post(self, | |
src, | |
src_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None): | |
q = k = self.with_pos_embed(src, pos) | |
src2 = self.self_attn(q, k, value=src, key_padding_mask=src_key_padding_mask)[0] | |
src = src + self.dropout1(src2) | |
src = self.norm1(src) | |
src2 = self.linear2(self.dropout(self.activation(self.linear1(src)))) | |
src = src + self.dropout2(src2) | |
src = self.norm2(src) | |
return src | |
def forward_pre(self, src, | |
src_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None): | |
src2 = self.norm1(src) | |
q = k = self.with_pos_embed(src2, pos) | |
src2 = self.self_attn(q, k, value=src2, key_padding_mask=src_key_padding_mask)[0] | |
src = src + self.dropout1(src2) | |
src2 = self.norm2(src) | |
src2 = self.linear2(self.dropout(self.activation(self.linear1(src2)))) | |
src = src + self.dropout2(src2) | |
return src | |
def forward(self, src, | |
src_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None): | |
if self.normalize_before: | |
return self.forward_pre(src, src_key_padding_mask, pos) | |
return self.forward_post(src, src_key_padding_mask, pos) | |
class TransformerDecoderLayer(nn.Module): | |
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, | |
activation="relu", normalize_before=False): | |
super().__init__() | |
self.self_attn = Attention(d_model, nhead, dropout=dropout) | |
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) | |
# Implementation of Feedforward model | |
self.linear1 = nn.Linear(d_model, dim_feedforward) | |
self.dropout = nn.Dropout(dropout) | |
self.linear2 = nn.Linear(dim_feedforward, d_model) | |
self.norm1 = nn.LayerNorm(d_model) | |
self.norm2 = nn.LayerNorm(d_model) | |
self.norm3 = nn.LayerNorm(d_model) | |
self.dropout1 = nn.Dropout(dropout) | |
self.dropout2 = nn.Dropout(dropout) | |
self.dropout3 = nn.Dropout(dropout) | |
self.activation = _get_activation_fn(activation) | |
self.normalize_before = normalize_before | |
def with_pos_embed(self, tensor, pos: Optional[Tensor]): | |
return tensor if pos is None else tensor + pos | |
def forward_post( | |
self, | |
tgt, | |
memory, | |
memory_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None, | |
self_attn_mask: Optional[Tensor] = None, | |
pre_kv=None, | |
): | |
tgt2, pre_kv = self.self_attn(tgt, pre_kv=pre_kv, attn_mask=self_attn_mask) | |
tgt = tgt + self.dropout1(tgt2) | |
tgt = self.norm1(tgt) | |
tgt2 = self.multihead_attn( | |
query=tgt, | |
key=self.with_pos_embed(memory, pos), | |
value=memory, | |
key_padding_mask=memory_key_padding_mask, | |
)[0] | |
tgt = tgt + self.dropout2(tgt2) | |
tgt = self.norm2(tgt) | |
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) | |
tgt = tgt + self.dropout3(tgt2) | |
tgt = self.norm3(tgt) | |
return tgt, pre_kv | |
def forward_pre( | |
self, | |
tgt, | |
memory, | |
memory_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None, | |
self_attn_mask: Optional[Tensor] = None, | |
pre_kv=None, | |
): | |
tgt2 = self.norm1(tgt) | |
tgt2, pre_kv = self.self_attn(tgt2, pre_kv=pre_kv, attn_mask=self_attn_mask) | |
tgt = tgt + self.dropout1(tgt2) | |
tgt2 = self.norm2(tgt) | |
tgt2 = self.multihead_attn( | |
query=tgt2, | |
key=self.with_pos_embed(memory, pos), | |
value=memory, | |
key_padding_mask=memory_key_padding_mask, | |
)[0] | |
tgt = tgt + self.dropout2(tgt2) | |
tgt2 = self.norm3(tgt) | |
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) | |
tgt = tgt + self.dropout3(tgt2) | |
return tgt, pre_kv | |
def forward( | |
self, | |
tgt, | |
memory, | |
memory_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None, | |
self_attn_mask: Optional[Tensor] = None, | |
pre_kv=None, | |
): | |
if self.normalize_before: | |
return self.forward_pre(tgt, memory, memory_key_padding_mask, pos, self_attn_mask, pre_kv) | |
return self.forward_post(tgt, memory, memory_key_padding_mask, pos, self_attn_mask, pre_kv) | |
class MLP(nn.Module): | |
""" Very simple multi-layer perceptron (also called FFN)""" | |
def __init__(self, input_dim, hidden_dim, output_dim, num_layers): | |
super().__init__() | |
self.num_layers = num_layers | |
h = [hidden_dim] * (num_layers - 1) | |
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) | |
def forward(self, x): | |
for i, layer in enumerate(self.layers): | |
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) | |
return x | |
def _get_clones(module, N): | |
return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) | |
def build_transformer(args, tokenizer): | |
if args.use_hf_transformer: | |
num_vocal = len(tokenizer) | |
encoder_config = BertConfig(max_position_embeddings = 1764, hidden_size = 256, num_attention_heads = 4, vocab_size = num_vocal, num_hidden_layers = 4, intermediate_size = 1024) | |
decoder_config = BertConfig(max_position_embeddings = 1764, hidden_size = 256, num_attention_heads = 4, vocab_size = num_vocal, is_decoder = True, num_hidden_layers = 4, intermediate_size = 1024) | |
config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder_config, decoder_config, add_pooling_layer = False, decoder_add_pooling_layer = False) | |
model = EncoderDecoderModel(config=config) | |
model.config.vocab_size = num_vocal | |
model.config.decoder_start_token_id = tokenizer.SOS_ID | |
model.config.pad_token_id = tokenizer.PAD_ID | |
model.config.eos_token_id = tokenizer.EOS_ID | |
model.encoder.embeddings.word_embeddings = None | |
model.encoder.pooler = None | |
return model | |
else: | |
num_vocal = len(tokenizer) | |
return Transformer( | |
d_model=args.hidden_dim, | |
dropout=args.dropout, | |
nhead=args.nheads, | |
dim_feedforward=args.dim_feedforward, | |
num_encoder_layers=args.enc_layers, | |
num_decoder_layers=args.dec_layers, | |
normalize_before=args.pre_norm, | |
num_vocal=num_vocal, | |
pred_eos=args.pred_eos, | |
tokenizer=tokenizer | |
) | |
def _get_activation_fn(activation): | |
"""Return an activation function given a string""" | |
if activation == "relu": | |
return F.relu | |
if activation == "gelu": | |
return F.gelu | |
if activation == "glu": | |
return F.glu | |
raise RuntimeError(F"activation should be relu/gelu, not {activation}.") | |