Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
class Attention(nn.Module): | |
def __init__(self, dim, num_heads=8, dropout=0.): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = head_dim ** -0.5 | |
self.qkv = nn.Linear(dim, dim * 3) | |
self.attn_drop = nn.Dropout(dropout) | |
self.proj = nn.Linear(dim, dim) | |
def forward(self, x, pre_kv=None, attn_mask=None): | |
N, B, C = x.shape | |
qkv = self.qkv(x).reshape(N, B, 3, self.num_heads, C // self.num_heads).permute(2, 1, 3, 0, 4) | |
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) | |
if not self.training: | |
k = torch.cat([pre_kv[0], k], dim=2) | |
v = torch.cat([pre_kv[1], v], dim=2) | |
pre_kv = torch.stack([k, v], dim=0) | |
attn = (q @ k.transpose(-2, -1)) * self.scale | |
if attn_mask is not None: | |
attn.masked_fill_(attn_mask, float('-inf')) | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).permute(2, 0, 1, 3).reshape(N, B, C) | |
x = self.proj(x) | |
return x, pre_kv | |