Spaces:
Sleeping
Sleeping
import torch | |
from .decode_strategy import DecodeStrategy | |
def sample_with_temperature(logits, sampling_temp, keep_topk): | |
"""Select next tokens randomly from the top k possible next tokens. | |
Samples from a categorical distribution over the ``keep_topk`` words using | |
the category probabilities ``logits / sampling_temp``. | |
""" | |
if sampling_temp == 0.0 or keep_topk == 1: | |
# argmax | |
topk_scores, topk_ids = logits.topk(1, dim=-1) | |
if sampling_temp > 0: | |
topk_scores /= sampling_temp | |
else: | |
logits = torch.div(logits, sampling_temp) | |
if keep_topk > 0: | |
top_values, top_indices = torch.topk(logits, keep_topk, dim=1) | |
kth_best = top_values[:, -1].view([-1, 1]) | |
kth_best = kth_best.repeat([1, logits.shape[1]]).float() | |
ignore = torch.lt(logits, kth_best) | |
logits = logits.masked_fill(ignore, -10000) | |
dist = torch.distributions.Multinomial(logits=logits, total_count=1) | |
topk_ids = torch.argmax(dist.sample(), dim=1, keepdim=True) | |
topk_scores = logits.gather(dim=1, index=topk_ids) | |
return topk_ids, topk_scores | |
class GreedySearch(DecodeStrategy): | |
"""Select next tokens randomly from the top k possible next tokens. | |
""" | |
def __init__(self, pad, bos, eos, batch_size, min_length, max_length, | |
return_attention=False, return_hidden=False, sampling_temp=1, keep_topk=1): | |
super().__init__( | |
pad, bos, eos, batch_size, 1, min_length, max_length, return_attention, return_hidden) | |
self.sampling_temp = sampling_temp | |
self.keep_topk = keep_topk | |
self.topk_scores = None | |
def initialize(self, memory_bank, device=None): | |
fn_map_state = None | |
if device is None: | |
device = memory_bank.device | |
self.memory_length = memory_bank.size(1) | |
super().initialize(memory_bank, device) | |
self.select_indices = torch.arange( | |
self.batch_size, dtype=torch.long, device=device) | |
self.original_batch_idx = torch.arange( | |
self.batch_size, dtype=torch.long, device=device) | |
return fn_map_state, memory_bank | |
def current_predictions(self): | |
return self.alive_seq[:, -1] | |
def batch_offset(self): | |
return self.select_indices | |
def _pick(self, log_probs): | |
"""Function used to pick next tokens. | |
""" | |
topk_ids, topk_scores = sample_with_temperature( | |
log_probs, self.sampling_temp, self.keep_topk) | |
return topk_ids, topk_scores | |
def advance(self, log_probs, attn=None, hidden=None, label=None): | |
"""Select next tokens randomly from the top k possible next tokens. | |
""" | |
self.ensure_min_length(log_probs) | |
topk_ids, self.topk_scores = self._pick(log_probs) # log_probs: b x v; topk_ids & self.topk_scores: b x (t=1) | |
self.is_finished = topk_ids.eq(self.eos) | |
if label is not None: | |
label = label.view_as(self.is_finished) | |
self.is_finished = label.eq(self.eos) | |
self.alive_seq = torch.cat([self.alive_seq, topk_ids], -1) # b x (l+1) (first element is <bos>; note l = len(self)-1) | |
self.alive_log_token_scores = torch.cat([self.alive_log_token_scores, self.topk_scores], -1) | |
if self.return_attention: | |
if self.alive_attn is None: | |
self.alive_attn = attn | |
else: | |
self.alive_attn = torch.cat([self.alive_attn, attn], 1) | |
if self.return_hidden: | |
if self.alive_hidden is None: | |
self.alive_hidden = hidden | |
else: | |
self.alive_hidden = torch.cat([self.alive_hidden, hidden], 1) # b x l x h | |
self.ensure_max_length() | |
def update_finished(self): | |
"""Finalize scores and predictions.""" | |
# is_finished indicates the decoder finished generating the sequence. Remove it from the batch and update | |
# the results. | |
finished_batches = self.is_finished.view(-1).nonzero() | |
for b in finished_batches.view(-1): | |
b_orig = self.original_batch_idx[b] | |
# scores/predictions/attention are lists, | |
# (to be compatible with beam-search) | |
self.scores[b_orig].append(torch.exp(torch.mean(self.alive_log_token_scores[b])).item()) | |
self.token_scores[b_orig].append(torch.exp(self.alive_log_token_scores[b]).tolist()) | |
self.predictions[b_orig].append(self.alive_seq[b, 1:]) # skip <bos> | |
self.attention[b_orig].append( | |
self.alive_attn[b, :, :self.memory_length] if self.alive_attn is not None else []) | |
self.hidden[b_orig].append( | |
self.alive_hidden[b, :] if self.alive_hidden is not None else []) | |
self.done = self.is_finished.all() | |
if self.done: | |
return | |
is_alive = ~self.is_finished.view(-1) | |
self.alive_seq = self.alive_seq[is_alive] | |
self.alive_log_token_scores = self.alive_log_token_scores[is_alive] | |
if self.alive_attn is not None: | |
self.alive_attn = self.alive_attn[is_alive] | |
if self.alive_hidden is not None: | |
self.alive_hidden = self.alive_hidden[is_alive] | |
self.select_indices = is_alive.nonzero().view(-1) | |
self.original_batch_idx = self.original_batch_idx[is_alive] | |
# select_indices is equal to original_batch_idx for greedy search? | |