ChemEagle_API / get_molecular_agent.py
CYF200127's picture
Upload 162 files
1f516b6 verified
raw
history blame
19.9 kB
import sys
import torch
import json
from chemietoolkit import ChemIEToolkit
import cv2
from PIL import Image
import json
import sys
#sys.path.append('./RxnScribe-main/')
import torch
from rxnscribe import RxnScribe
import json
import sys
import torch
import json
model = ChemIEToolkit(device=torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
from molscribe.chemistry import _convert_graph_to_smiles
import base64
import torch
import json
from PIL import Image
import numpy as np
from chemietoolkit import ChemIEToolkit, utils
from openai import AzureOpenAI
import os
ckpt_path = "./pix2seq_reaction_full.ckpt"
model1 = RxnScribe(ckpt_path, device=torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
device = torch.device(('cuda' if torch.cuda.is_available() else 'cpu'))
model = ChemIEToolkit(device=torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
def get_multi_molecular(image_path: str) -> list:
'''Returns a list of reactions extracted from the image.'''
# 打开图像文件
image = Image.open(image_path).convert('RGB')
# 将图像作为输入传递给模型
coref_results = model.extract_molecule_corefs_from_figures([image])
for item in coref_results:
for bbox in item.get("bboxes", []):
for key in ["category", "molfile", "symbols", 'atoms', "bonds", 'category_id', 'score', 'corefs']: #'atoms'
bbox.pop(key, None) # 安全地移除键
print(json.dumps(coref_results))
# 返回反应列表,使用 json.dumps 进行格式化
return json.dumps(coref_results)
def get_multi_molecular_text_to_correct(image_path: str) -> list:
'''Returns a list of reactions extracted from the image.'''
# 打开图像文件
image = Image.open(image_path).convert('RGB')
# 将图像作为输入传递给模型
coref_results = model.extract_molecule_corefs_from_figures([image])
for item in coref_results:
for bbox in item.get("bboxes", []):
for key in ["category", "bbox", "molfile", "symbols", 'atoms', "bonds", 'category_id', 'score', 'corefs']: #'atoms'
bbox.pop(key, None) # 安全地移除键
print(json.dumps(coref_results))
# 返回反应列表,使用 json.dumps 进行格式化
return json.dumps(coref_results)
def get_multi_molecular_text_to_correct_withatoms(image_path: str) -> list:
'''Returns a list of reactions extracted from the image.'''
# 打开图像文件
image = Image.open(image_path).convert('RGB')
# 将图像作为输入传递给模型
coref_results = model.extract_molecule_corefs_from_figures([image])
for item in coref_results:
for bbox in item.get("bboxes", []):
for key in ["coords","edges","molfile", 'atoms', "bonds", 'category_id', 'score', 'corefs']: #'atoms'
bbox.pop(key, None) # 安全地移除键
print(json.dumps(coref_results))
# 返回反应列表,使用 json.dumps 进行格式化
return json.dumps(coref_results)
def process_reaction_image_with_multiple_products_and_text(image_path: str) -> dict:
"""
Args:
image_path (str): 图像文件路径。
Returns:
dict: 整理后的反应数据,包括反应物、产物和反应模板。
"""
# 配置 API Key 和 Azure Endpoint
api_key = os.getenv("CHEMEAGLE_API_KEY")
if not api_key:
raise RuntimeError("Missing CHEMEAGLE_API_KEY environment variable")
# 替换为实际的 API Key
azure_endpoint = "https://hkust.azure-api.net" # 替换为实际的 Azure Endpoint
model = ChemIEToolkit(device=torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
client = AzureOpenAI(
api_key=api_key,
api_version='2024-06-01',
azure_endpoint=azure_endpoint
)
# 加载图像并编码为 Base64
def encode_image(image_path: str):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
base64_image = encode_image(image_path)
# GPT 工具调用配置
tools = [
{
'type': 'function',
'function': {
'name': 'get_multi_molecular_text_to_correct_withatoms',
'description': 'Extracts the SMILES string, the symbols set, and the text coref of all molecular images in a table-reaction image and ready to be correct.',
'parameters': {
'type': 'object',
'properties': {
'image_path': {
'type': 'string',
'description': 'The path to the reaction image.',
},
},
'required': ['image_path'],
'additionalProperties': False,
},
},
},
]
# 提供给 GPT 的消息内容
with open('./prompt_getmolecular.txt', 'r') as prompt_file:
prompt = prompt_file.read()
messages = [
{'role': 'system', 'content': 'You are a helpful assistant.'},
{
'role': 'user',
'content': [
{'type': 'text', 'text': prompt},
{'type': 'image_url', 'image_url': {'url': f'data:image/png;base64,{base64_image}'}}
]
}
]
# 调用 GPT 接口
response = client.chat.completions.create(
model = 'gpt-4o',
temperature = 0,
response_format={ 'type': 'json_object' },
messages = [
{'role': 'system', 'content': 'You are a helpful assistant.'},
{
'role': 'user',
'content': [
{
'type': 'text',
'text': prompt
},
{
'type': 'image_url',
'image_url': {
'url': f'data:image/png;base64,{base64_image}'
}
}
]},
],
tools = tools)
# Step 1: 工具映射表
TOOL_MAP = {
'get_multi_molecular_text_to_correct_withatoms': get_multi_molecular_text_to_correct_withatoms,
}
# Step 2: 处理多个工具调用
tool_calls = response.choices[0].message.tool_calls
results = []
# 遍历每个工具调用
for tool_call in tool_calls:
tool_name = tool_call.function.name
tool_arguments = tool_call.function.arguments
tool_call_id = tool_call.id
tool_args = json.loads(tool_arguments)
if tool_name in TOOL_MAP:
# 调用工具并获取结果
tool_result = TOOL_MAP[tool_name](image_path)
else:
raise ValueError(f"Unknown tool called: {tool_name}")
# 保存每个工具调用结果
results.append({
'role': 'tool',
'content': json.dumps({
'image_path': image_path,
f'{tool_name}':(tool_result),
}),
'tool_call_id': tool_call_id,
})
# Prepare the chat completion payload
completion_payload = {
'model': 'gpt-4o',
'messages': [
{'role': 'system', 'content': 'You are a helpful assistant.'},
{
'role': 'user',
'content': [
{
'type': 'text',
'text': prompt
},
{
'type': 'image_url',
'image_url': {
'url': f'data:image/png;base64,{base64_image}'
}
}
]
},
response.choices[0].message,
*results
],
}
# Generate new response
response = client.chat.completions.create(
model=completion_payload["model"],
messages=completion_payload["messages"],
response_format={ 'type': 'json_object' },
temperature=0
)
# 获取 GPT 生成的结果
gpt_output = [json.loads(response.choices[0].message.content)]
def get_multi_molecular(image_path: str) -> list:
'''Returns a list of reactions extracted from the image.'''
# 打开图像文件
image = Image.open(image_path).convert('RGB')
# 将图像作为输入传递给模型
coref_results = model.extract_molecule_corefs_from_figures([image])
return coref_results
coref_results = get_multi_molecular(image_path)
def update_symbols_in_atoms(input1, input2):
"""
用 input1 中更新后的 'symbols' 替换 input2 中对应 bboxes 的 'symbols',并同步更新 'atoms' 的 'atom_symbol'。
假设 input1 和 input2 的结构一致。
"""
for item1, item2 in zip(input1, input2):
bboxes1 = item1.get('bboxes', [])
bboxes2 = item2.get('bboxes', [])
if len(bboxes1) != len(bboxes2):
print("Warning: Mismatched number of bboxes!")
continue
for bbox1, bbox2 in zip(bboxes1, bboxes2):
# 更新 symbols
if 'symbols' in bbox1:
bbox2['symbols'] = bbox1['symbols'] # 更新 symbols
# 更新 atoms 的 atom_symbol
if 'symbols' in bbox1 and 'atoms' in bbox2:
symbols = bbox1['symbols']
atoms = bbox2.get('atoms', [])
# 确保 symbols 和 atoms 的长度一致
if len(symbols) != len(atoms):
print(f"Warning: Mismatched symbols and atoms in bbox {bbox1.get('bbox')}!")
continue
for atom, symbol in zip(atoms, symbols):
atom['atom_symbol'] = symbol # 更新 atom_symbol
return input2
input2_updated = update_symbols_in_atoms(gpt_output, coref_results)
def update_smiles_and_molfile(input_data, conversion_function):
"""
使用更新后的 'symbols'、'coords' 和 'edges' 调用 `conversion_function` 生成新的 'smiles' 和 'molfile',
并替换到原数据结构中。
参数:
- input_data: 包含 bboxes 的嵌套数据结构
- conversion_function: 函数,接受 'coords', 'symbols', 'edges' 并返回 (new_smiles, new_molfile, _)
返回:
- 更新后的数据结构
"""
for item in input_data:
for bbox in item.get('bboxes', []):
# 检查必需的键是否存在
if all(key in bbox for key in ['coords', 'symbols', 'edges']):
coords = bbox['coords']
symbols = bbox['symbols']
edges = bbox['edges']
# 调用转换函数生成新的 'smiles' 和 'molfile'
new_smiles, new_molfile, _ = conversion_function(coords, symbols, edges)
print(f" Generated 'smiles': {new_smiles}")
# 替换旧的 'smiles' 和 'molfile'
bbox['smiles'] = new_smiles
bbox['molfile'] = new_molfile
return input_data
updated_data = update_smiles_and_molfile(input2_updated, _convert_graph_to_smiles)
return updated_data
def process_reaction_image_with_multiple_products_and_text_correctR(image_path: str) -> dict:
"""
Args:
image_path (str): 图像文件路径。
Returns:
dict: 整理后的反应数据,包括反应物、产物和反应模板。
"""
# 配置 API Key 和 Azure Endpoint
api_key = os.getenv("CHEMEAGLE_API_KEY")
if not api_key:
raise RuntimeError("Missing CHEMEAGLE_API_KEY environment variable")
# 替换为实际的 API Key
azure_endpoint = "https://hkust.azure-api.net" # 替换为实际的 Azure Endpoint
model = ChemIEToolkit(device=torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
client = AzureOpenAI(
api_key=api_key,
api_version='2024-06-01',
azure_endpoint=azure_endpoint
)
# 加载图像并编码为 Base64
def encode_image(image_path: str):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
base64_image = encode_image(image_path)
# GPT 工具调用配置
tools = [
{
'type': 'function',
'function': {
'name': 'get_multi_molecular_text_to_correct_withatoms',
'description': 'Extracts the SMILES string, the symbols set, and the text coref of all molecular images in a table-reaction image and ready to be correct.',
'parameters': {
'type': 'object',
'properties': {
'image_path': {
'type': 'string',
'description': 'The path to the reaction image.',
},
},
'required': ['image_path'],
'additionalProperties': False,
},
},
},
]
# 提供给 GPT 的消息内容
with open('./prompt_getmolecular_correctR.txt', 'r') as prompt_file:
prompt = prompt_file.read()
messages = [
{'role': 'system', 'content': 'You are a helpful assistant.'},
{
'role': 'user',
'content': [
{'type': 'text', 'text': prompt},
{'type': 'image_url', 'image_url': {'url': f'data:image/png;base64,{base64_image}'}}
]
}
]
# 调用 GPT 接口
response = client.chat.completions.create(
model = 'gpt-4o',
temperature = 0,
response_format={ 'type': 'json_object' },
messages = [
{'role': 'system', 'content': 'You are a helpful assistant.'},
{
'role': 'user',
'content': [
{
'type': 'text',
'text': prompt
},
{
'type': 'image_url',
'image_url': {
'url': f'data:image/png;base64,{base64_image}'
}
}
]},
],
tools = tools)
# Step 1: 工具映射表
TOOL_MAP = {
'get_multi_molecular_text_to_correct_withatoms': get_multi_molecular_text_to_correct_withatoms,
}
# Step 2: 处理多个工具调用
tool_calls = response.choices[0].message.tool_calls
results = []
# 遍历每个工具调用
for tool_call in tool_calls:
tool_name = tool_call.function.name
tool_arguments = tool_call.function.arguments
tool_call_id = tool_call.id
tool_args = json.loads(tool_arguments)
if tool_name in TOOL_MAP:
# 调用工具并获取结果
tool_result = TOOL_MAP[tool_name](image_path)
else:
raise ValueError(f"Unknown tool called: {tool_name}")
# 保存每个工具调用结果
results.append({
'role': 'tool',
'content': json.dumps({
'image_path': image_path,
f'{tool_name}':(tool_result),
}),
'tool_call_id': tool_call_id,
})
# Prepare the chat completion payload
completion_payload = {
'model': 'gpt-4o',
'messages': [
{'role': 'system', 'content': 'You are a helpful assistant.'},
{
'role': 'user',
'content': [
{
'type': 'text',
'text': prompt
},
{
'type': 'image_url',
'image_url': {
'url': f'data:image/png;base64,{base64_image}'
}
}
]
},
response.choices[0].message,
*results
],
}
# Generate new response
response = client.chat.completions.create(
model=completion_payload["model"],
messages=completion_payload["messages"],
response_format={ 'type': 'json_object' },
temperature=0
)
# 获取 GPT 生成的结果
gpt_output = [json.loads(response.choices[0].message.content)]
def get_multi_molecular(image_path: str) -> list:
'''Returns a list of reactions extracted from the image.'''
# 打开图像文件
image = Image.open(image_path).convert('RGB')
# 将图像作为输入传递给模型
coref_results = model.extract_molecule_corefs_from_figures([image])
return coref_results
coref_results = get_multi_molecular(image_path)
def update_symbols_in_atoms(input1, input2):
"""
用 input1 中更新后的 'symbols' 替换 input2 中对应 bboxes 的 'symbols',并同步更新 'atoms' 的 'atom_symbol'。
假设 input1 和 input2 的结构一致。
"""
for item1, item2 in zip(input1, input2):
bboxes1 = item1.get('bboxes', [])
bboxes2 = item2.get('bboxes', [])
if len(bboxes1) != len(bboxes2):
print("Warning: Mismatched number of bboxes!")
continue
for bbox1, bbox2 in zip(bboxes1, bboxes2):
# 更新 symbols
if 'symbols' in bbox1:
bbox2['symbols'] = bbox1['symbols'] # 更新 symbols
# 更新 atoms 的 atom_symbol
if 'symbols' in bbox1 and 'atoms' in bbox2:
symbols = bbox1['symbols']
atoms = bbox2.get('atoms', [])
# 确保 symbols 和 atoms 的长度一致
if len(symbols) != len(atoms):
print(f"Warning: Mismatched symbols and atoms in bbox {bbox1.get('bbox')}!")
continue
for atom, symbol in zip(atoms, symbols):
atom['atom_symbol'] = symbol # 更新 atom_symbol
return input2
input2_updated = update_symbols_in_atoms(gpt_output, coref_results)
def update_smiles_and_molfile(input_data, conversion_function):
"""
使用更新后的 'symbols'、'coords' 和 'edges' 调用 `conversion_function` 生成新的 'smiles' 和 'molfile',
并替换到原数据结构中。
参数:
- input_data: 包含 bboxes 的嵌套数据结构
- conversion_function: 函数,接受 'coords', 'symbols', 'edges' 并返回 (new_smiles, new_molfile, _)
返回:
- 更新后的数据结构
"""
for item in input_data:
for bbox in item.get('bboxes', []):
# 检查必需的键是否存在
if all(key in bbox for key in ['coords', 'symbols', 'edges']):
coords = bbox['coords']
symbols = bbox['symbols']
edges = bbox['edges']
# 调用转换函数生成新的 'smiles' 和 'molfile'
new_smiles, new_molfile, _ = conversion_function(coords, symbols, edges)
print(f" Generated 'smiles': {new_smiles}")
# 替换旧的 'smiles' 和 'molfile'
bbox['smiles'] = new_smiles
bbox['molfile'] = new_molfile
return input_data
updated_data = update_smiles_and_molfile(input2_updated, _convert_graph_to_smiles)
print(f"updated_mol_data:{updated_data}")
return updated_data