Spaces:
Sleeping
Sleeping
File size: 26,439 Bytes
1f516b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 |
import json
import copy
import random
import numpy as np
PAD = '<pad>'
SOS = '<sos>'
EOS = '<eos>'
UNK = '<unk>'
MASK = '<mask>'
Rxn = '[Rxn]' # Reaction
Rct = '[Rct]' # Reactant
Prd = '[Prd]' # Product
Cnd = '[Cnd]' # Condition
Idt = '[Idt]' # Identifier
Mol = '[Mol]' # Molecule
Txt = '[Txt]' # Text
Sup = '[Sup]' # Supplement
Noise = '[Nos]'
class ReactionTokenizer(object):
def __init__(self, input_size=100, sep_xy=True, pix2seq=False):
self.stoi = {}
self.itos = {}
self.pix2seq = pix2seq
self.maxx = input_size # height
self.maxy = input_size # width
self.sep_xy = sep_xy
self.special_tokens = [PAD, SOS, EOS, UNK, MASK]
self.tokens = [Rxn, Rct, Prd, Cnd, Idt, Mol, Txt, Sup, Noise]
self.fit_tokens(self.tokens)
def __len__(self):
if self.pix2seq:
return 2094
if self.sep_xy:
return self.offset + self.maxx + self.maxy
else:
return self.offset + max(self.maxx, self.maxy)
@property
def max_len(self):
return 256
@property
def PAD_ID(self):
return self.stoi[PAD]
@property
def SOS_ID(self):
return self.stoi[SOS]
@property
def EOS_ID(self):
return self.stoi[EOS]
@property
def UNK_ID(self):
return self.stoi[UNK]
@property
def NOISE_ID(self):
return self.stoi[Noise]
@property
def offset(self):
return 0 if self.pix2seq else len(self.stoi)
@property
def output_constraint(self):
return True
def fit_tokens(self, tokens):
vocab = self.special_tokens + tokens
if self.pix2seq:
for i, s in enumerate(vocab):
self.stoi[s] = 2001 + i
self.stoi[EOS] = len(self) - 2
# self.stoi[Noise] = len(self) - 1
else:
for i, s in enumerate(vocab):
self.stoi[s] = i
self.itos = {item[1]: item[0] for item in self.stoi.items()}
self.bbox_category_to_token = {1: Mol, 2: Txt, 3: Idt, 4: Sup}
self.token_to_bbox_category = {item[1]: item[0] for item in self.bbox_category_to_token.items()}
def is_x(self, x):
return 0 <= x - self.offset < self.maxx
def is_y(self, y):
if self.sep_xy:
return self.maxx <= y - self.offset < self.maxx + self.maxy
return 0 <= y - self.offset < self.maxy
def x_to_id(self, x):
if x < -0.001 or x > 1.001:
print(x)
else:
x = min(max(x, 0), 1)
assert 0 <= x <= 1
return self.offset + round(x * (self.maxx - 1))
def y_to_id(self, y):
if y < -0.001 or y > 1.001:
print(y)
else:
y = min(max(y, 0), 1)
assert 0 <= y <= 1
if self.sep_xy:
return self.offset + self.maxx + round(y * (self.maxy - 1))
return self.offset + round(y * (self.maxy - 1))
def id_to_x(self, id, scale=1):
if not self.is_x(id):
return -1
return (id - self.offset) / (self.maxx - 1) / scale
def id_to_y(self, id, scale=1):
if not self.is_y(id):
return -1
if self.sep_xy:
return (id - self.offset - self.maxx) / (self.maxy - 1) * scale
return (id - self.offset) / (self.maxy - 1) / scale
def update_state(self, state, idx):
if state is None:
new_state = (Rxn, 'e')
else:
if state[1] == 'x1':
new_state = (state[0], 'y1')
elif state[1] == 'y1':
new_state = (state[0], 'x2')
elif state[1] == 'x2':
new_state = (state[0], 'y2')
elif state[1] == 'y2':
new_state = (state[0], 'c')
elif state[1] == 'c':
if self.is_x(idx):
new_state = (state[0], 'x1')
else:
new_state = (state[0], 'e')
else:
if state[0] == Rct:
if self.is_x(idx):
new_state = (Cnd, 'x1')
else:
new_state = (Cnd, 'e')
elif state[0] == Cnd:
new_state = (Prd, 'x1')
elif state[0] == Prd:
new_state = (Rxn, 'e')
elif state[0] == Rxn:
if self.is_x(idx):
new_state = (Rct, 'x1')
else:
new_state = (EOS, 'e')
else:
new_state = (EOS, 'e')
return new_state
def output_mask(self, state):
# mask: True means forbidden
mask = np.array([True] * len(self))
if state[1] in ['y1', 'c']:
mask[self.offset:self.offset+self.maxx] = False
if state[1] in ['x1', 'x2']:
if self.sep_xy:
mask[self.offset+self.maxx:self.offset+self.maxx+self.maxy] = False
else:
mask[self.offset:self.offset+self.maxy] = False
if state[1] == 'y2':
for token in [Idt, Mol, Txt, Sup]:
mask[self.stoi[token]] = False
if state[1] == 'c':
mask[self.stoi[state[0]]] = False
if state[1] == 'e':
if state[0] in [Rct, Cnd, Rxn]:
mask[self.offset:self.offset + self.maxx] = False
if state[0] == Rct:
mask[self.stoi[Cnd]] = False
if state[0] == Prd:
mask[self.stoi[Rxn]] = False
mask[self.stoi[Noise]] = False
if state[0] in [Rxn, EOS]:
mask[self.EOS_ID] = False
return mask
def update_states_and_masks(self, states, ids):
new_states = [self.update_state(state, idx) for state, idx in zip(states, ids)]
masks = np.array([self.output_mask(state) for state in new_states])
return new_states, masks
def bbox_to_sequence(self, bbox, category):
sequence = []
x1, y1, x2, y2 = bbox
if x1 >= x2 or y1 >= y2:
return []
sequence.append(self.x_to_id(x1))
sequence.append(self.y_to_id(y1))
sequence.append(self.x_to_id(x2))
sequence.append(self.y_to_id(y2))
if category in self.bbox_category_to_token:
sequence.append(self.stoi[self.bbox_category_to_token[category]])
else:
sequence.append(self.stoi[Noise])
return sequence
def sequence_to_bbox(self, sequence, scale=[1, 1]):
if len(sequence) < 5:
return None
x1, y1 = self.id_to_x(sequence[0], scale[0]), self.id_to_y(sequence[1], scale[1])
x2, y2 = self.id_to_x(sequence[2], scale[0]), self.id_to_y(sequence[3], scale[1])
if x1 == -1 or y1 == -1 or x2 == -1 or y2 == -1 or x1 >= x2 or y1 >= y2 or sequence[4] not in self.itos:
return None
category = self.itos[sequence[4]]
if category not in [Mol, Txt, Idt, Sup]:
return None
return {'category': category, 'bbox': (round(x1,3), round(y1,3), round(x2,3), round(y2,3)), 'category_id': self.token_to_bbox_category[category]}
def perturb_reaction(self, reaction, boxes):
reaction = copy.deepcopy(reaction)
options = []
options.append(0) # Option 0: add
if not(len(reaction['reactants']) == 1 and len(reaction['conditions']) == 0 and len(reaction['products']) == 1):
options.append(1) # Option 1: delete
options.append(2) # Option 2: move
choice = random.choice(options)
if choice == 0:
key = random.choice(['reactants', 'conditions', 'products'])
# TODO: insert to a random position
# We simply add a random box, which may be a duplicate box in this reaction
reaction[key].append(random.randrange(len(boxes)))
if choice == 1 or choice == 2:
options = []
for key, val in [('reactants', 1), ('conditions', 0), ('products', 1)]:
if len(reaction[key]) > val:
options.append(key)
key = random.choice(options)
idx = random.randrange(len(reaction[key]))
del_box = reaction[key][idx]
reaction[key] = reaction[key][:idx] + reaction[key][idx+1:]
if choice == 2:
options = ['reactants', 'conditions', 'products']
options.remove(key)
newkey = random.choice(options)
reaction[newkey].append(del_box)
return reaction
def augment_reaction(self, reactions, data):
area, boxes, labels = data['area'], data['boxes'], data['labels']
nonempty_boxes = [i for i in range(len(area)) if area[i] > 0]
if len(nonempty_boxes) == 0:
return None
if len(reactions) == 0 or random.randrange(100) < 20:
num_reactants = random.randint(1, 3)
num_conditions = random.randint(0, 3)
num_products = random.randint(1, 3)
reaction = {
'reactants': random.choices(nonempty_boxes, k=num_reactants),
'conditions': random.choices(nonempty_boxes, k=num_conditions),
'products': random.choices(nonempty_boxes, k=num_products)
}
else:
assert len(reactions) > 0
reaction = self.perturb_reaction(random.choice(reactions), boxes)
return reaction
def reaction_to_sequence(self, reaction, data, shuffle_bbox=False):
reaction = copy.deepcopy(reaction)
area, boxes, labels = data['area'], data['boxes'], data['labels']
# If reactants or products are empty (because of image cropping), skip the reaction
if all([area[i] == 0 for i in reaction['reactants']]) or all([area[i] == 0 for i in reaction['products']]):
return []
if shuffle_bbox:
random.shuffle(reaction['reactants'])
random.shuffle(reaction['conditions'])
random.shuffle(reaction['products'])
sequence = []
for idx in reaction['reactants']:
if area[idx] == 0:
continue
sequence += self.bbox_to_sequence(boxes[idx].tolist(), labels[idx].item())
sequence.append(self.stoi[Rct])
for idx in reaction['conditions']:
if area[idx] == 0:
continue
sequence += self.bbox_to_sequence(boxes[idx].tolist(), labels[idx].item())
sequence.append(self.stoi[Cnd])
for idx in reaction['products']:
if area[idx] == 0:
continue
sequence += self.bbox_to_sequence(boxes[idx].tolist(), labels[idx].item())
sequence.append(self.stoi[Prd])
sequence.append(self.stoi[Rxn])
return sequence
def data_to_sequence(self, data, rand_order=False, shuffle_bbox=False, add_noise=False, mix_noise=False):
sequence = [self.SOS_ID]
sequence_out = [self.SOS_ID]
reactions = copy.deepcopy(data['reactions'])
reactions_seqs = []
for reaction in reactions:
seq = self.reaction_to_sequence(reaction, data, shuffle_bbox=shuffle_bbox)
reactions_seqs.append([seq, seq])
noise_seqs = []
if add_noise:
total_len = sum(len(seq) for seq, seq_out in reactions_seqs)
while total_len < self.max_len:
reaction = self.augment_reaction(reactions, data)
if reaction is None:
break
seq = self.reaction_to_sequence(reaction, data)
if len(seq) == 0:
continue
if mix_noise:
seq[-1] = self.NOISE_ID
seq_out = [self.PAD_ID] * (len(seq) - 1) + [self.NOISE_ID]
else:
seq_out = [self.PAD_ID] * (len(seq) - 1) + [self.NOISE_ID]
noise_seqs.append([seq, seq_out])
total_len += len(seq)
if rand_order:
random.shuffle(reactions_seqs)
reactions_seqs += noise_seqs
if mix_noise:
random.shuffle(reactions_seqs)
for seq, seq_out in reactions_seqs:
sequence += seq
sequence_out += seq_out
sequence.append(self.EOS_ID)
sequence_out.append(self.EOS_ID)
return sequence, sequence_out
def sequence_to_data(self, sequence, scores=None, scale=None):
reactions = []
i = 0
cur_reaction = {'reactants': [], 'conditions': [], 'products': []}
flag = 'reactants'
if len(sequence) > 0 and sequence[0] == self.SOS_ID:
i += 1
while i < len(sequence):
if sequence[i] == self.EOS_ID:
break
if sequence[i] in self.itos:
if self.itos[sequence[i]] in [Rxn, Noise]:
cur_reaction['label'] = self.itos[sequence[i]]
if len(cur_reaction['reactants']) > 0 and len(cur_reaction['products']) > 0:
reactions.append(cur_reaction)
cur_reaction = {'reactants': [], 'conditions': [], 'products': []}
flag = 'reactants'
elif self.itos[sequence[i]] == Rct:
flag = 'conditions'
elif self.itos[sequence[i]] == Cnd:
flag = 'products'
elif self.itos[sequence[i]] == Prd:
flag = None
elif i+5 <= len(sequence) and flag is not None:
bbox = self.sequence_to_bbox(sequence[i:i+5], scale)
if bbox is not None:
cur_reaction[flag].append(bbox)
i += 4
i += 1
return reactions
def sequence_to_tokens(self, sequence):
return [self.itos[x] if x in self.itos else x for x in sequence]
class BboxTokenizer(ReactionTokenizer):
def __init__(self, input_size=100, sep_xy=True, pix2seq=False):
super(BboxTokenizer, self).__init__(input_size, sep_xy, pix2seq)
@property
def max_len(self):
return 500
@property
def output_constraint(self):
return False
def random_category(self):
return random.choice(list(self.bbox_category_to_token.keys()))
# return random.choice([random.choice(list(self.bbox_category_to_token.keys())), self.NOISE_ID])
def random_bbox(self):
_x1, _y1, _x2, _y2 = random.random(), random.random(), random.random(), random.random()
x1, y1, x2, y2 = min(_x1, _x2), min(_y1, _y2), max(_x1, _x2), max(_y1, _y2)
category = self.random_category()
return [x1, y1, x2, y2], category
def jitter_bbox(self, bbox, ratio=0.2):
x1, y1, x2, y2 = bbox
w, h = x2 - x1, y2 - y1
_x1 = x1 + random.uniform(-w*ratio, w*ratio)
_y1 = y1 + random.uniform(-h*ratio, h*ratio)
_x2 = x2 + random.uniform(-w * ratio, w * ratio)
_y2 = y2 + random.uniform(-h * ratio, h * ratio)
x1, y1, x2, y2 = min(_x1, _x2), min(_y1, _y2), max(_x1, _x2), max(_y1, _y2)
category = self.random_category()
return np.clip([x1, y1, x2, y2], 0, 1), category
def augment_box(self, bboxes):
if len(bboxes) == 0:
return self.random_bbox()
if random.random() < 0.5:
return self.random_bbox()
else:
return self.jitter_bbox(random.choice(bboxes))
def split_heuristic_helper(self, toprocess):
maxy = 0
for pair in toprocess:
if pair[0][1]>maxy:
maxy = pair[0][1]
numbuckets = int(maxy//500 + 1)
buckets = {}
for i in range(numbuckets):
buckets[i] = []
for pair in toprocess:
buckets[int(pair[0][1]//500)].append(pair)
for bucket in buckets:
buckets[bucket] = sorted(buckets[bucket], key = lambda x: x[0][0])
toreturn = []
for bucket in buckets:
toreturn+=buckets[bucket]
return toreturn
def data_to_sequence(self, data, add_noise=False, rand_order=False, split_heuristic=False):
sequence = [self.SOS_ID]
sequence_out = [self.SOS_ID]
if rand_order:
perm = np.random.permutation(len(data['boxes']))
boxes = data['boxes'][perm].tolist()
labels = data['labels'][perm].tolist()
elif split_heuristic:
to_process = list(zip(data['boxes'].tolist(), data['labels'].tolist()))
processed = self.split_heuristic_helper(to_process)
boxes = [item[0] for item in processed]
labels = [item[1] for item in processed]
else:
boxes = data['boxes'].tolist()
labels = data['labels'].tolist()
for bbox, category in zip(boxes, labels):
seq = self.bbox_to_sequence(bbox, category)
sequence += seq
# sequence[-1] = self.random_category()
sequence_out += seq
if add_noise:
while len(sequence) < self.max_len:
bbox, category = self.augment_box(boxes)
sequence += self.bbox_to_sequence(bbox, category)
sequence_out += [self.PAD_ID] * 4 + [self.NOISE_ID]
sequence.append(self.EOS_ID)
sequence_out.append(self.EOS_ID)
return sequence, sequence_out
def sequence_to_data(self, sequence, scores=None, scale=None):
bboxes = []
i = 0
#print(sequence)
if len(sequence) > 0 and sequence[0] == self.SOS_ID:
i += 1
while i < len(sequence):
if sequence[i] == self.EOS_ID:
break
if i+4 < len(sequence):
bbox = self.sequence_to_bbox(sequence[i:i+5], scale)
if bbox is not None:
if scores is not None:
bbox['score'] = scores[i + 4]
bboxes.append(bbox)
i += 4
i += 1
return bboxes
class CorefTokenizer(ReactionTokenizer):
def __init__(self, input_size=100, sep_xy=True, pix2seq=False):
super(CorefTokenizer, self).__init__(input_size, sep_xy, pix2seq)
@property
def max_len(self):
return 500
@property
def output_constraint(self):
return False
def split_heuristic_helper(self, toprocess):
maxy = 0
compress = []
for pair in toprocess:
if pair[1] == 1 or pair[1] == 2:
compress.append([pair])
else:
compress[-1].append(pair)
for pair in toprocess:
if pair[0][1] > maxy and (pair[1] == 1 or pair[1] ==2):
maxy = pair[0][1]
numbuckets = int(maxy//500 + 1)
buckets = {}
for i in range(numbuckets):
buckets[i] = []
for bbox_group in compress:
buckets[int(bbox_group[0][0][1]//500)].append(bbox_group)
for bucket in buckets:
buckets[bucket] = sorted(buckets[bucket], key = lambda x: x[0][0][0])
toreturn = []
for bucket in buckets:
for bbox_group in buckets[bucket]:
toreturn+=bbox_group
return toreturn
def coref_tokenize(self, boxes, labels, corefs, split_heuristic = False):
coref_dict = {}
for pair in corefs:
if pair[0] in coref_dict:
coref_dict[pair[0]].append(pair[1])
else:
coref_dict[pair[0]] = [pair[1]]
#coref_dict = {pair[0]: pair[1] for pair in corefs}
toreturn_boxes = []
toreturn_labels = []
for i, label in enumerate(labels):
if i in coref_dict:
toreturn_boxes.append(boxes[i])
toreturn_labels.append(labels[i])
for index in coref_dict[i]:
toreturn_boxes.append(boxes[index])
toreturn_labels.append(labels[index])
elif label == 1:
toreturn_boxes.append(boxes[i])
toreturn_labels.append(labels[i])
'''
for pair in corefs:
for entry in pair:
toreturn_boxes.append(boxes[entry])
toreturn_labels.append(labels[entry])
'''
if split_heuristic:
returned = self.split_heuristic_helper(list(zip(toreturn_boxes, toreturn_labels)))
toreturn_boxes = [r[0] for r in returned]
toreturn_labels = [r[1] for r in returned]
'''
if True:
for i, label in enumerate(labels):
if label == 2:
toreturn_boxes.append(boxes[i])
toreturn_labels.append(labels[i])
'''
return toreturn_boxes, toreturn_labels
def data_to_sequence(self, data, add_noise = False, rand_order = False, split_heuristic = False):
sequence = [self.SOS_ID]
sequence_out = [self.SOS_ID]
if rand_order:
#TODO
pass
else:
boxes, labels = self.coref_tokenize(data['boxes'].tolist(), data['labels'].tolist(), data['corefs'], split_heuristic)
for bbox, category in zip(boxes, labels):
seq = self.bbox_to_sequence(bbox, category)
sequence += seq
# sequence[-1] = self.random_category()
sequence_out += seq
if add_noise:
pass
#TODO
'''
while len(sequence) < self.max_len:
bbox, category = self.augment_box(boxes)
sequence += self.bbox_to_sequence(bbox, category)
sequence_out += [self.PAD_ID] * 4 + [self.NOISE_ID]
'''
#sequence = sequence[:6]
#sequence_out = sequence_out[:6]
sequence.append(self.EOS_ID)
sequence_out.append(self.EOS_ID)
return sequence, sequence_out
def sequence_to_data(self, sequence, scores=None, scale=None):
bboxes = []
i = 0
if len(sequence) > 0 and sequence[0] == self.SOS_ID:
i += 1
while i < len(sequence):
if sequence[i] == self.EOS_ID:
break
if i+4 < len(sequence):
bbox = self.sequence_to_bbox(sequence[i:i+5], scale)
if bbox is not None:
if scores is not None:
bbox['score'] = scores[i + 4]
bboxes.append(bbox)
i += 4
i += 1
return {'bboxes': bboxes, 'corefs': self.bbox_to_coref(bboxes)}
def bbox_to_coref(self, bboxes):
corefs = []
for i in range(len(bboxes) - 1):
if bboxes[i]['category_id'] == 1 or bboxes[i]['category_id'] == 2:
j = i + 1
while j < len(bboxes) and bboxes[j]['category_id'] == 3:
corefs.append([i, j])
j += 1
return corefs
class CocoTokenizer(BboxTokenizer):
def __init__(self, input_size=100, sep_xy=True, pix2seq=False):
super(CocoTokenizer, self).__init__(input_size, sep_xy, pix2seq)
self.index_to_class = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 7, 7: 8, 8: 9, 9: 10, 10: 11, 11: 13, 12: 14, 13: 15, 14: 16, 15: 17, 16: 18, 17: 19, 18: 20, 19: 21, 20: 22, 21: 23, 22: 24, 23: 25, 24: 27, 25: 28, 26: 31, 27: 32, 28: 33, 29: 34, 30: 35, 31: 36, 32: 37, 33: 38, 34: 39, 35: 40, 36: 41, 37: 42, 38: 43, 39: 44, 40: 46, 41: 47, 42: 48, 43: 49, 44: 50, 45: 51, 46: 52, 47: 53, 48: 54, 49: 55, 50: 56, 51: 57, 52: 58, 53: 59, 54: 60, 55: 61, 56: 62, 57: 63, 58: 64, 59: 65, 60: 67, 61: 70, 62: 72, 63: 73, 64: 74, 65: 75, 66: 76, 67: 77, 68: 78, 69: 79, 70: 80, 71: 81, 72: 82, 73: 84, 74: 85, 75: 86, 76: 87, 77: 88, 78: 89, 79: 90}
self.class_to_index = {1: 0, 2: 1, 3: 2, 4: 3, 5: 4, 6: 5, 7: 6, 8: 7, 9: 8, 10: 9, 11: 10, 13: 11, 14: 12, 15: 13, 16: 14, 17: 15, 18: 16, 19: 17, 20: 18, 21: 19, 22: 20, 23: 21, 24: 22, 25: 23, 27: 24, 28: 25, 31: 26, 32: 27, 33: 28, 34: 29, 35: 30, 36: 31, 37: 32, 38: 33, 39: 34, 40: 35, 41: 36, 42: 37, 43: 38, 44: 39, 46: 40, 47: 41, 48: 42, 49: 43, 50: 44, 51: 45, 52: 46, 53: 47, 54: 48, 55: 49, 56: 50, 57: 51, 58: 52, 59: 53, 60: 54, 61: 55, 62: 56, 63: 57, 64: 58, 65: 59, 67: 60, 70: 61, 72: 62, 73: 63, 74: 64, 75: 65, 76: 66, 77: 67, 78: 68, 79: 69, 80: 70, 81: 71, 82: 72, 84: 73, 85: 74, 86: 75, 87: 76, 88: 77, 89: 78, 90: 79}
@property
def max_len(self):
return 700
def random_category(self):
return random.choice(list(self.class_to_index.keys()))
def bbox_to_sequence(self, bbox, category):
sequence = []
x1, y1, x2, y2 = bbox
if x1 >= x2 or y1 >= y2:
return []
sequence.append(self.x_to_id(x1))
sequence.append(self.y_to_id(y1))
sequence.append(self.x_to_id(x2))
sequence.append(self.y_to_id(y2))
sequence.append(2006+self.class_to_index[category])
return sequence
def sequence_to_bbox(self, sequence, scale=[1, 1]):
if len(sequence) < 5:
return None
x1, y1 = self.id_to_x(sequence[0], scale[0]), self.id_to_y(sequence[1], scale[1])
x2, y2 = self.id_to_x(sequence[2], scale[0]), self.id_to_y(sequence[3], scale[1])
if x1 == -1 or y1 == -1 or x2 == -1 or y2 == -1 or x1 >= x2 or y1 >= y2:
return None
if sequence[4] - 2006 in self.index_to_class:
category = self.index_to_class[sequence[4] - 2006]
else:
category = -1
return { 'bbox': (x1, y1, x2, y2), 'category_id': category}
def get_tokenizer(args):
tokenizer = {}
if args.pix2seq:
args.coord_bins = 2000
args.sep_xy = False
format = args.format
if format == 'reaction':
tokenizer[format] = ReactionTokenizer(args.coord_bins, args.sep_xy, args.pix2seq)
if format == 'bbox':
if args.is_coco:
tokenizer[format] = CocoTokenizer(args.coord_bins, args.sep_xy, args.pix2seq)
else:
tokenizer[format] = BboxTokenizer(args.coord_bins, args.sep_xy, args.pix2seq)
if format == 'coref':
tokenizer[format] = CorefTokenizer(args.coord_bins, args.sep_xy, args.pix2seq)
return tokenizer |