File size: 10,081 Bytes
1f516b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
Pix2Seq model and criterion classes.
"""
import torch
from torch.profiler import profile, record_function, ProfilerActivity
import torch.nn.functional as F
from torch import nn

from .misc import nested_tensor_from_tensor_list
from .backbone import build_backbone
from .transformer import build_transformer
from transformers import GenerationConfig

import numpy as np


class Pix2Seq(nn.Module):
    """ This is the Pix2Seq module that performs object detection """
    def __init__(self, backbone, transformer, use_hf = False):
        """ Initializes the model.
        Parameters:
            backbone: torch module of the backbone to be used. See backbone.py
            transformer: torch module of the transformer architecture. See transformer.py
            num_classes: number of object classes
            num_bins: number of bins for each side of the input image
        """
        super().__init__()
        self.transformer = transformer
        hidden_dim = 256 if use_hf else transformer.d_model
        self.input_proj = nn.Sequential(
            nn.Conv2d(backbone.num_channels, hidden_dim, kernel_size=(1, 1)),
            nn.GroupNorm(32, hidden_dim))
        self.backbone = backbone

        self.use_hf = use_hf

        

    def forward(self, image_tensor, targets=None, max_len=500, cheat = None):
        """ 
        image_tensor:
        The forward expects a NestedTensor, which consists of:
           - samples.tensor: batched images, of shape [batch_size x 3 x H x W]
           - samples.mask: a binary mask of shape [batch_size x H x W], containing 1 on padded pixels
        It returns a dict with the following elements:
           - "pred_logits": the classification logits (including no-object) for all vocabulary.
                            Shape= [batch_size, num_sequence, num_vocal]
        """

        if isinstance(image_tensor, (list, torch.Tensor)):
            image_tensor = nested_tensor_from_tensor_list(image_tensor)
        features, pos = self.backbone(image_tensor)  
        #print(len(features))
        #print(pos.size()) 
        '''
        with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], with_stack = True, record_shapes=True) as prof:
                with record_function("model_inference"):
                    features, pos = self.backbone(image_tensor)
        print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=10))
        prof.export_stacks("/tmp/profiler_stacks_cuda_A6000_16_backbone.txt", "self_cuda_time_total") 
        '''
        src, mask = features[-1].decompose()
        assert mask is not None
        mask = torch.zeros_like(mask).bool()

        src = self.input_proj(src)

        
        

        if self.use_hf: 
            if targets is not None:
                '''
                logits = self.transformer(src)



                



                input_seq, input_len = targets

                logits = logits.reshape(-1, 2094)

                loss = self.loss_fn(logits, input_seq.view(-1))

                return loss, loss
                '''


                '''
                output_logits = self.transformer(src, input_seq[:, 1:], mask, pos[-1])
                return output_logits[:, :-1]
                '''
                #print(input_seq)
                input_seq, input_len = targets
                input_seq = input_seq[:, 1:]
                bs = src.shape[0]
                src = src.flatten(2).permute(0, 2, 1)
                #b x c x h x w to b x hw x c
                pos_embed = pos[-1].flatten(2).permute(0, 2, 1)
                max_len = input_seq.size(1)
                indices = torch.arange(max_len).unsqueeze(0).expand_as(input_seq).to(src.device)
                mask = indices >= input_len - torch.ones(input_len.shape).to(src.device)
                masked_input_seq = input_seq.masked_fill(mask, -100)
                #print("input_seq "+str(input_seq))
                #print("masked_input "+str(masked_input_seq))
                #src = src + pos_embed #unclear if this line is needed...
                '''
                decoder_input = torch.cat(
                    [
                        nn.Embedding(1, 256).to(src.device).weight.unsqueeze(0).repeat(bs, 1, 1),
                        nn.Embedding(2092, 256).to(src.device)(input_seq)
                    ], dim = 1
                )
                '''
                #decoder_mask = torch.full(decoder_input.shape[:2], False, dtype = torch.bool).to(src.device)
                #decoder_mask[:, 0] = True
                output = self.transformer(inputs_embeds = src,labels = masked_input_seq)
                #print("output logits " + str(torch.argmax(output["logits"], dim = 2)) + "target labels "+ str(masked_input_seq))

                #print(output["logits"].shape)

                return output["logits"], output["loss"] 
            else:
                '''
                logits = self.transformer(src)

                print(logits.shape)

                return self.transformer(src).argmax(dim = 1), self.transformer(src).argmax(dim = 1)
                '''

                #with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], with_stack = True, record_shapes=True) as prof:
                #    with record_function("model_inference"):
                #print(pos[-1])
                #output_seqs, output_scores = self.transformer(src, None, mask, pos[-1], max_len=max_len)
                '''
                flatten src from B x C x H x W into B x HW x C and pass in as input_embeds
                potentially flatten pos[-1] as well and add to input embeds
                '''
                bs = src.shape[0]
                src = src.flatten(2).permute(0, 2, 1)
                generation_config = GenerationConfig(max_new_tokens = max_len, bos_token_id = 2002, eos_token_id = 2092, pad_token_id = 2001, output_hidden_states = True)
                #output = self.transformer.generate(inputs_embeds = src, generation_config = generation_config, return_dict_in_generate=True, output_scores=True)
                #transition_scores = self.transformer.compute_transition_scores(output.sequences, output.scores, normalize_logits=True)
                #for tok, score in zip(output.sequences[0], transition_scores[0]):
                #    print(f"| {tok:5d} | {score.to('cpu').numpy():.3f} | {np.exp(score.to('cpu').numpy()):.2%}")
                #print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=10))
                #prof.export_stacks("/tmp/profiler_stacks_cpu_A6000_16_decoder.txt", "self_cpu_time_total")
                #print("loss "+str(output.loss))
                
                #encoder_outputs = self.transformer.encoder(inputs_embeds = src)
                '''
                print(cheat)
                print("own predictions")
                print(cheat['coref'][0][:, :3])
                print(self.transformer.decoder(input_ids = cheat['coref'][0][:, :3].to(src.device), encoder_hidden_states = torch.rand_like(encoder_outputs[0]).to(src.device)).logits.argmax(dim = 2))
                print(self.transformer.decoder(input_ids = cheat['coref'][0][:, :4].to(src.device), encoder_hidden_states = torch.rand_like(encoder_outputs[0]).to(src.device)).logits.argmax(dim = 2))
                print(self.transformer.decoder(input_ids = cheat['coref'][0][:, :5].to(src.device), encoder_hidden_states = torch.rand_like(encoder_outputs[0]).to(src.device)).logits.argmax(dim = 2))
                '''

                #input_seq, input_len = cheat['bbox']
                #input_seq = input_seq[:, 1:]
                #b x c x h x w to b x hw x c
                #max_len = input_seq.size(1)
                #indices = torch.arange(max_len).unsqueeze(0).expand_as(input_seq).to(src.device)
                #mask = indices >= input_len - torch.ones(input_len.shape).to(src.device)
                #masked_input_seq = input_seq.masked_fill(mask, -100)
                #output = self.transformer(inputs_embeds = src,labels = masked_input_seq) 
                #print("output logits " + str(torch.argmax(output["logits"], dim = 2)) + "target labels "+ str(masked_input_seq))
                outputs = self.transformer.generate(inputs_embeds = src, generation_config = generation_config)
            
                return outputs, outputs
        else:
            if targets is not None:
                input_seq, input_len = targets
                output_logits = self.transformer(src, input_seq[:, 1:], mask, pos[-1])
                return output_logits[:, :-1]
            else:
                output_seqs, output_scores = self.transformer(src, None, mask, pos[-1], max_len=max_len)
                return output_seqs, output_scores



def build_pix2seq_model(args, tokenizer):
    # the `num_classes` naming here is somewhat misleading.
    # it indeed corresponds to `max_obj_id + 1`, where max_obj_id
    # is the maximum id for a class in your dataset. For example,
    # COCO has a max_obj_id of 90, so we pass `num_classes` to be 91.
    # As another example, for a dataset that has a single class with id 1,
    # you should pass `num_classes` to be 2 (max_obj_id + 1).
    # For more details on this, check the following discussion
    # https://github.com/facebookresearch/detr/issues/108#issuecomment-650269223


    

    backbone = build_backbone(args)
    transformer = build_transformer(args, tokenizer)

    model = Pix2Seq(backbone, transformer, use_hf = args.use_hf_transformer)

    if args.pix2seq_ckpt is not None:
        checkpoint = torch.load(args.pix2seq_ckpt, map_location='cpu')
        if args.use_hf_transformer:
            new_dict = {}
            #print(checkpoint['state_dict'].keys())
            for key in checkpoint['state_dict']:
                new_dict[key[6:]] = checkpoint['state_dict'][key]
            model.load_state_dict(new_dict, strict = False)
        else:
            model.load_state_dict(checkpoint['model'])

    return model