File size: 7,022 Bytes
1f516b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os
import contextlib
import copy
import numpy as np

from pycocotools.cocoeval import COCOeval
from pycocotools.coco import COCO

from .data import ImageData, ReactionImageData, CorefImageData


class CocoEvaluator(object):

    def __init__(self, coco_gt):
        coco_gt = copy.deepcopy(coco_gt)
        self.coco_gt = coco_gt

    def evaluate(self, predictions):
        img_ids, results = self.prepare(predictions, 'bbox')
        if len(results) == 0:
            return np.zeros((12,))
        coco_dt = self.coco_gt.loadRes(results)
        cocoEval = COCOeval(self.coco_gt, coco_dt, 'bbox')
        cocoEval.params.imgIds = img_ids
        cocoEval.params.catIds = [1]
        cocoEval.evaluate()
        cocoEval.accumulate()
        cocoEval.summarize()
        self.cocoEval = cocoEval
        return cocoEval.stats

    def prepare(self, predictions, iou_type):
        if iou_type == "bbox":
            return self.prepare_for_coco_detection(predictions)
        else:
            raise ValueError("Unknown iou type {}".format(iou_type))

    def prepare_for_coco_detection(self, predictions):
        img_ids = []
        coco_results = []
        for idx, prediction in enumerate(predictions):
            if len(prediction) == 0:
                continue

            image = self.coco_gt.dataset['images'][idx]
            img_ids.append(image['id'])
            width = image['width']
            height = image['height']
            coco_results.extend(
                [
                    {
                        "image_id": image['id'],
                        "category_id": pred['category_id'],
                        "bbox": convert_to_xywh(pred['bbox'], width, height),
                        "score": pred['score'],
                    }
                    for pred in prediction
                ]
            )
        return img_ids, coco_results


def convert_to_xywh(box, width, height):
    xmin, ymin, xmax, ymax = box
    return [xmin * width, ymin * height, (xmax - xmin) * width, (ymax - ymin) * height]


EMPTY_STATS = {'gold_hits': 0, 'gold_total': 0, 'pred_hits': 0, 'pred_total': 0, 'image': 0}


class ReactionEvaluator(object):

    def evaluate_image(self, gold_image, pred_image, **kwargs):
        data = ReactionImageData(gold_image, pred_image)


        return data.evaluate(**kwargs)

    def compute_metrics(self, gold_hits, gold_total, pred_hits, pred_total):
        precision = pred_hits / max(pred_total, 1)
        recall = gold_hits / max(gold_total, 1)
        f1 = precision * recall * 2 / max(precision + recall, 1e-6)
        return {'precision': precision, 'recall': recall, 'f1': f1}

    def evaluate(self, groundtruths, predictions, **kwargs):
        gold_hits, gold_total, pred_hits, pred_total = 0, 0, 0, 0
        for gold_image, pred_image in zip(groundtruths, predictions):
            gh, ph = self.evaluate_image(gold_image, pred_image, **kwargs)
            gold_hits += sum(gh)
            gold_total += len(gh)
            pred_hits += sum(ph)
            pred_total += len(ph)
        return self.compute_metrics(gold_hits, gold_total, pred_hits, pred_total)

    def evaluate_by_size(self, groundtruths, predictions, **kwargs):
        group_stats = {}
        for gold_image, pred_image in zip(groundtruths, predictions):
            gh, ph = self.evaluate_image(gold_image, pred_image, **kwargs)
            gtotal = len(gh)
            if gtotal not in group_stats:
                group_stats[gtotal] = copy.deepcopy(EMPTY_STATS)
            group_stats[gtotal]['gold_hits'] += sum(gh)
            group_stats[gtotal]['gold_total'] += len(gh)
            group_stats[gtotal]['pred_hits'] += sum(ph)
            group_stats[gtotal]['pred_total'] += len(ph)
            group_stats[gtotal]['image'] += 1
        group_scores = {}
        for gtotal, stats in group_stats.items():
            group_scores[gtotal] = self.compute_metrics(
                stats['gold_hits'], stats['gold_total'], stats['pred_hits'], stats['pred_total'])
        return group_scores, group_stats

    def evaluate_by_group(self, groundtruths, predictions, **kwargs):
        group_stats = {}
        for gold_image, pred_image in zip(groundtruths, predictions):
            gh, ph = self.evaluate_image(gold_image, pred_image, **kwargs)
            diagram_type = gold_image['diagram_type']
            if diagram_type not in group_stats:
                group_stats[diagram_type] = copy.deepcopy(EMPTY_STATS)
            group_stats[diagram_type]['gold_hits'] += sum(gh)
            group_stats[diagram_type]['gold_total'] += len(gh)
            group_stats[diagram_type]['pred_hits'] += sum(ph)
            group_stats[diagram_type]['pred_total'] += len(ph)
            group_stats[diagram_type]['image'] += 1
        group_scores = {}
        for group, stats in group_stats.items():
            group_scores[group] = self.compute_metrics(
                stats['gold_hits'], stats['gold_total'], stats['pred_hits'], stats['pred_total'])
        return group_scores, group_stats

    def evaluate_summarize(self, groundtruths, predictions, **kwargs):
        size_scores, size_stats = self.evaluate_by_size(groundtruths, predictions, **kwargs)
        summarize = {
            'overall': copy.deepcopy(EMPTY_STATS),
            # 'single': copy.deepcopy(EMPTY_STATS),
            # 'multiple': copy.deepcopy(EMPTY_STATS)
        }
        for size, stats in size_stats.items():
            if type(size) is int:
                # output = summarize['single'] if size <= 1 else summarize['multiple']
                for key in stats:
                    # output[key] += stats[key]
                    summarize['overall'][key] += stats[key]
        scores = {}
        for key, val in summarize.items():
            scores[key] = self.compute_metrics(val['gold_hits'], val['gold_total'], val['pred_hits'], val['pred_total'])
        return scores, summarize, size_stats

class CorefEvaluator(object):

    def evaluate_image(self, gold_image, pred_image, **kwargs):
        data = CorefImageData(gold_image, predictions = pred_image)
        return data.evaluate()
    
    def evaluate(self, groundtruths, predictions):
        hits, gold_total, pred_total = 0, 0, 0
        counter = 0 
        print(len(predictions))
        for gold_image, pred_image in zip(groundtruths, predictions):
            
            try: hit, gold_pairs, pred_pairs = self.evaluate_image(gold_image, pred_image)
            except: print(counter)
            hits += hit
            gold_total += gold_pairs
            pred_total += pred_pairs
            counter += 1
        return hits, gold_total, pred_total
    
    def evaluate_summarize(self, groundtruths, predictions):
        hits, gold_total, pred_total = self.evaluate(groundtruths, predictions)
        precision = hits/max(pred_total, 1)
        recall = hits/max(gold_total, 1)
        f1 = precision * recall * 2 / max(precision + recall, 1e-6)
        return (precision, recall, f1)