File size: 41,479 Bytes
1f516b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import torch\n",
    "import json\n",
    "from chemietoolkit import ChemIEToolkit\n",
    "import cv2\n",
    "from PIL import Image\n",
    "import json\n",
    "model = ChemIEToolkit(device=torch.device('cpu')) \n",
    "from get_molecular_agent import process_reaction_image_with_multiple_products_and_text\n",
    "from get_reaction_agent import get_reaction_withatoms\n",
    "from get_reaction_agent import get_full_reaction\n",
    "\n",
    "\n",
    "# 定义函数,接受多个图像路径并返回反应列表\n",
    "def get_multi_molecular(image_path: str) -> list:\n",
    "    '''Returns a list of reactions extracted from the image.'''\n",
    "    # 打开图像文件\n",
    "    image = Image.open(image_path).convert('RGB')\n",
    "    \n",
    "    # 将图像作为输入传递给模型\n",
    "    coref_results = model.extract_molecule_corefs_from_figures([image])\n",
    "    \n",
    "    for item in coref_results:\n",
    "        for bbox in item.get(\"bboxes\", []):\n",
    "            for key in [\"category\", \"molfile\", \"symbols\", 'atoms', \"bonds\", 'category_id', 'score', 'corefs',\"coords\",\"edges\"]: #'atoms'\n",
    "                bbox.pop(key, None)  # 安全地移除键\n",
    "    print(json.dumps(coref_results))\n",
    "    # 返回反应列表,使用 json.dumps 进行格式化\n",
    "    \n",
    "    return json.dumps(coref_results)\n",
    "\n",
    "def get_multi_molecular_text_to_correct(image_path: str) -> list:\n",
    "    '''Returns a list of reactions extracted from the image.'''\n",
    "    # 打开图像文件\n",
    "    image = Image.open(image_path).convert('RGB')\n",
    "    \n",
    "    # 将图像作为输入传递给模型\n",
    "    coref_results = model.extract_molecule_corefs_from_figures([image])\n",
    "    #coref_results = process_reaction_image_with_multiple_products_and_text(image_path)\n",
    "    for item in coref_results:\n",
    "        for bbox in item.get(\"bboxes\", []):\n",
    "            for key in [\"category\", \"bbox\", \"molfile\", \"symbols\", 'atoms', \"bonds\", 'category_id', 'score', 'corefs',\"coords\",\"edges\"]: #'atoms'\n",
    "                bbox.pop(key, None)  # 安全地移除键\n",
    "    print(json.dumps(coref_results))\n",
    "    # 返回反应列表,使用 json.dumps 进行格式化\n",
    "    \n",
    "    return json.dumps(coref_results)\n",
    "\n",
    "def get_multi_molecular_text_to_correct_withatoms(image_path: str) -> list:\n",
    "    '''Returns a list of reactions extracted from the image.'''\n",
    "    # 打开图像文件\n",
    "    image = Image.open(image_path).convert('RGB')\n",
    "    \n",
    "    # 将图像作为输入传递给模型\n",
    "    #coref_results = model.extract_molecule_corefs_from_figures([image])\n",
    "    coref_results = process_reaction_image_with_multiple_products_and_text(image_path)\n",
    "    for item in coref_results:\n",
    "        for bbox in item.get(\"bboxes\", []):\n",
    "            for key in [\"molfile\", 'atoms', \"bonds\", 'category_id', 'score', 'corefs',\"coords\",\"edges\"]: #'atoms'\n",
    "                bbox.pop(key, None)  # 安全地移除键\n",
    "    print(json.dumps(coref_results))\n",
    "    # 返回反应列表,使用 json.dumps 进行格式化\n",
    "    return json.dumps(coref_results)\n",
    "\n",
    "#get_multi_molecular_text_to_correct('./acs.joc.2c00176 example 1.png')\n",
    "\n",
    "import sys\n",
    "#sys.path.append('./RxnScribe-main/')\n",
    "import torch\n",
    "from rxnscribe import RxnScribe\n",
    "import json\n",
    "\n",
    "ckpt_path = \"./pix2seq_reaction_full.ckpt\"\n",
    "model1 = RxnScribe(ckpt_path, device=torch.device('cpu'))\n",
    "device = torch.device('cpu')\n",
    "\n",
    "def get_reaction(image_path: str) -> dict:\n",
    "    '''\n",
    "    Returns a structured dictionary of reactions extracted from the image,\n",
    "    including reactants, conditions, and products, with their smiles, text, and bbox.\n",
    "    '''\n",
    "    image_file = image_path\n",
    "    #raw_prediction = model1.predict_image_file(image_file, molscribe=True, ocr=True)\n",
    "    raw_prediction = get_reaction_withatoms(image_path)\n",
    "\n",
    "    # Ensure raw_prediction is treated as a list directly\n",
    "    structured_output = {}\n",
    "    for section_key in ['reactants', 'conditions', 'products']:\n",
    "        if section_key in raw_prediction[0]:\n",
    "            structured_output[section_key] = []\n",
    "            for item in raw_prediction[0][section_key]:\n",
    "                if section_key in ['reactants', 'products']:\n",
    "                    # Extract smiles and bbox for molecules\n",
    "                    structured_output[section_key].append({\n",
    "                        \"smiles\": item.get(\"smiles\", \"\"),\n",
    "                        \"bbox\": item.get(\"bbox\", [])\n",
    "                    })\n",
    "                elif section_key == 'conditions':\n",
    "                    # Extract smiles, text, and bbox for conditions\n",
    "                    condition_data = {\"bbox\": item.get(\"bbox\", [])}\n",
    "                    if \"smiles\" in item:\n",
    "                        condition_data[\"smiles\"] = item.get(\"smiles\", \"\")\n",
    "                    if \"text\" in item:\n",
    "                        condition_data[\"text\"] = item.get(\"text\", [])\n",
    "                    structured_output[section_key].append(condition_data)\n",
    "    print(f\"structured_output:{structured_output}\")\n",
    "\n",
    "    return structured_output\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "import base64\n",
    "import torch\n",
    "import json\n",
    "from PIL import Image\n",
    "import numpy as np\n",
    "from chemietoolkit import ChemIEToolkit, utils\n",
    "from openai import AzureOpenAI\n",
    "\n",
    "def process_reaction_image_with_multiple_products(image_path: str) -> dict:\n",
    "    \"\"\"\n",
    "    Args:\n",
    "        image_path (str): 图像文件路径。\n",
    "\n",
    "    Returns:\n",
    "        dict: 整理后的反应数据,包括反应物、产物和反应模板。\n",
    "    \"\"\"\n",
    "    # 配置 API Key 和 Azure Endpoint\n",
    "    api_key = \"b038da96509b4009be931e035435e022\"  # 替换为实际的 API Key\n",
    "    azure_endpoint = \"https://hkust.azure-api.net\"  # 替换为实际的 Azure Endpoint\n",
    "    \n",
    "\n",
    "    model = ChemIEToolkit(device=torch.device('cpu'))\n",
    "    client = AzureOpenAI(\n",
    "        api_key=api_key,\n",
    "        api_version='2024-06-01',\n",
    "        azure_endpoint=azure_endpoint\n",
    "    )\n",
    "\n",
    "    # 加载图像并编码为 Base64\n",
    "    def encode_image(image_path: str):\n",
    "        with open(image_path, \"rb\") as image_file:\n",
    "            return base64.b64encode(image_file.read()).decode('utf-8')\n",
    "\n",
    "    base64_image = encode_image(image_path)\n",
    "\n",
    "    # GPT 工具调用配置\n",
    "    tools = [\n",
    "        {\n",
    "            'type': 'function',\n",
    "            'function': {\n",
    "                'name': 'get_multi_molecular_text_to_correct',\n",
    "                'description': 'Extracts the SMILES string and text coref from molecular images.',\n",
    "                'parameters': {\n",
    "                    'type': 'object',\n",
    "                    'properties': {\n",
    "                        'image_path': {\n",
    "                            'type': 'string',\n",
    "                            'description': 'Path to the reaction image.'\n",
    "                        }\n",
    "                    },\n",
    "                    'required': ['image_path'],\n",
    "                    'additionalProperties': False\n",
    "                }\n",
    "            }\n",
    "        },\n",
    "        {\n",
    "        'type': 'function',\n",
    "        'function': {\n",
    "            'name': 'get_reaction',\n",
    "            'description': 'Get a list of reactions from a reaction image. A reaction contains data of the reactants, conditions, and products.',\n",
    "            'parameters': {\n",
    "                'type': 'object',\n",
    "                'properties': {\n",
    "                    'image_path': {\n",
    "                        'type': 'string',\n",
    "                        'description': 'The path to the reaction image.',\n",
    "                    },\n",
    "                },\n",
    "                'required': ['image_path'],\n",
    "                'additionalProperties': False,\n",
    "            },\n",
    "        },\n",
    "            },\n",
    "    ]\n",
    "\n",
    "    # 提供给 GPT 的消息内容\n",
    "    with open('./prompt.txt', 'r') as prompt_file:\n",
    "        prompt = prompt_file.read()\n",
    "    messages = [\n",
    "        {'role': 'system', 'content': 'You are a helpful assistant.'},\n",
    "        {\n",
    "            'role': 'user',\n",
    "            'content': [\n",
    "                {'type': 'text', 'text': prompt},\n",
    "                {'type': 'image_url', 'image_url': {'url': f'data:image/png;base64,{base64_image}'}}\n",
    "            ]\n",
    "        }\n",
    "    ]\n",
    "\n",
    "    # 调用 GPT 接口\n",
    "    response = client.chat.completions.create(\n",
    "    model = 'gpt-4o',\n",
    "    temperature = 0,\n",
    "    response_format={ 'type': 'json_object' },\n",
    "    messages = [\n",
    "        {'role': 'system', 'content': 'You are a helpful assistant.'},\n",
    "        {\n",
    "            'role': 'user',\n",
    "            'content': [\n",
    "                {\n",
    "                    'type': 'text',\n",
    "                    'text': prompt\n",
    "                },\n",
    "                {\n",
    "                    'type': 'image_url',\n",
    "                    'image_url': {\n",
    "                        'url': f'data:image/png;base64,{base64_image}'\n",
    "                    }\n",
    "                }\n",
    "            ]},\n",
    "    ],\n",
    "    tools = tools)\n",
    "    \n",
    "# Step 1: 工具映射表\n",
    "    TOOL_MAP = {\n",
    "        'get_multi_molecular_text_to_correct': get_multi_molecular_text_to_correct,\n",
    "        'get_reaction': get_reaction\n",
    "    }\n",
    "\n",
    "    # Step 2: 处理多个工具调用\n",
    "    tool_calls = response.choices[0].message.tool_calls\n",
    "    results = []\n",
    "\n",
    "    # 遍历每个工具调用\n",
    "    for tool_call in tool_calls:\n",
    "        tool_name = tool_call.function.name\n",
    "        tool_arguments = tool_call.function.arguments\n",
    "        tool_call_id = tool_call.id\n",
    "        \n",
    "        tool_args = json.loads(tool_arguments)\n",
    "        \n",
    "        if tool_name in TOOL_MAP:\n",
    "            # 调用工具并获取结果\n",
    "            tool_result = TOOL_MAP[tool_name](image_path)\n",
    "        else:\n",
    "            raise ValueError(f\"Unknown tool called: {tool_name}\")\n",
    "        \n",
    "        # 保存每个工具调用结果\n",
    "        results.append({\n",
    "            'role': 'tool',\n",
    "            'content': json.dumps({\n",
    "                'image_path': image_path,\n",
    "                f'{tool_name}':(tool_result),\n",
    "            }),\n",
    "            'tool_call_id': tool_call_id,\n",
    "        })\n",
    "\n",
    "\n",
    "# Prepare the chat completion payload\n",
    "    completion_payload = {\n",
    "        'model': 'gpt-4o',\n",
    "        'messages': [\n",
    "            {'role': 'system', 'content': 'You are a helpful assistant.'},\n",
    "            {\n",
    "                'role': 'user',\n",
    "                'content': [\n",
    "                    {\n",
    "                        'type': 'text',\n",
    "                        'text': prompt\n",
    "                    },\n",
    "                    {\n",
    "                        'type': 'image_url',\n",
    "                        'image_url': {\n",
    "                            'url': f'data:image/png;base64,{base64_image}'\n",
    "                        }\n",
    "                    }\n",
    "                ]\n",
    "            },\n",
    "            response.choices[0].message,\n",
    "            *results\n",
    "            ],\n",
    "    }\n",
    "\n",
    "# Generate new response\n",
    "    response = client.chat.completions.create(\n",
    "        model=completion_payload[\"model\"],\n",
    "        messages=completion_payload[\"messages\"],\n",
    "        response_format={ 'type': 'json_object' },\n",
    "        temperature=0\n",
    "    )\n",
    "\n",
    "\n",
    "    \n",
    "    # 获取 GPT 生成的结果\n",
    "    gpt_output = json.loads(response.choices[0].message.content)\n",
    "    print(f\"gptout:{gpt_output}\")\n",
    "\n",
    "    image = Image.open(image_path).convert('RGB')\n",
    "    image_np = np.array(image)\n",
    "\n",
    "    #########################\n",
    "    #reaction_results = model.extract_reactions_from_figures([image_np])\n",
    "    reaction_results = get_reaction_withatoms(image_path)[0]\n",
    "    reactions = []\n",
    "    \n",
    "    # 将 reactants 和 products 转换为 reactions\n",
    "    for reactants, conditions, products in zip(reaction_results.get('reactants', []), reaction_results.get('conditions', []), reaction_results.get('products', [])):\n",
    "        reaction = {\n",
    "            \"reactants\": [reactants],\n",
    "            \"conditions\": [conditions],\n",
    "            \"products\": [products]\n",
    "        }\n",
    "        reactions.append(reaction)\n",
    "    reaction_results = [{\"reactions\": reactions}]\n",
    "    #coref_results = model.extract_molecule_corefs_from_figures([image_np])\n",
    "    coref_results = process_reaction_image_with_multiple_products_and_text(image_path)\n",
    "    ########################\n",
    "\n",
    "    # 定义更新工具输出的函数\n",
    "    def extract_smiles_details(smiles_data, raw_details):\n",
    "        smiles_details = {}\n",
    "        for smiles in smiles_data:\n",
    "            for detail in raw_details:\n",
    "                for bbox in detail.get('bboxes', []):\n",
    "                    if bbox.get('smiles') == smiles:\n",
    "                        smiles_details[smiles] = {\n",
    "                            'category': bbox.get('category'),\n",
    "                            'bbox': bbox.get('bbox'),\n",
    "                            'category_id': bbox.get('category_id'),\n",
    "                            'score': bbox.get('score'),\n",
    "                            'molfile': bbox.get('molfile'),\n",
    "                            'atoms': bbox.get('atoms'),\n",
    "                            'bonds': bbox.get('bonds')\n",
    "                        }\n",
    "                        break\n",
    "        return smiles_details\n",
    "\n",
    "# 获取结果\n",
    "    smiles_details = extract_smiles_details(gpt_output, coref_results)\n",
    "\n",
    "    reactants_array = []\n",
    "    products = []\n",
    "\n",
    "    for reactant in reaction_results[0]['reactions'][0]['reactants']:\n",
    "    #for reactant in reaction_results[0]['reactions'][0]['reactants']:\n",
    "        if 'smiles' in reactant:\n",
    "            #print(reactant['smiles'])\n",
    "            #print(reactant)\n",
    "            reactants_array.append(reactant['smiles'])\n",
    "\n",
    "    for product in reaction_results[0]['reactions'][0]['products']:\n",
    "        #print(product['smiles'])\n",
    "        #print(product)\n",
    "        products.append(product['smiles'])\n",
    "    # 输出结果\n",
    "    #import pprint\n",
    "    #pprint.pprint(smiles_details)\n",
    "\n",
    "        # 整理反应数据\n",
    "    try:\n",
    "        backed_out = utils.backout_without_coref(reaction_results, coref_results, gpt_output, smiles_details, model.molscribe)\n",
    "        backed_out.sort(key=lambda x: x[2])\n",
    "        extracted_rxns = {}\n",
    "        for reactants, products_, label in backed_out:\n",
    "            extracted_rxns[label] = {'reactants': reactants, 'products': products_}\n",
    "\n",
    "        toadd = {\n",
    "            \"reaction_template\": {\n",
    "                \"reactants\": reactants_array,\n",
    "                \"products\": products\n",
    "            },\n",
    "            \"reactions\": extracted_rxns\n",
    "        }\n",
    "        \n",
    "\n",
    "    # 按标签排序\n",
    "        sorted_keys = sorted(toadd[\"reactions\"].keys())\n",
    "        toadd[\"reactions\"] = {i: toadd[\"reactions\"][i] for i in sorted_keys}\n",
    "        original_molecular_list = {'Original molecular list': gpt_output}\n",
    "        final_data= toadd.copy()\n",
    "        final_data.update(original_molecular_list)\n",
    "    except:\n",
    "        #pass\n",
    "        final_data = {'Original molecular list': gpt_output}\n",
    "\n",
    "    print(final_data)\n",
    "    return final_data\n",
    " \n",
    "\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# # image_path = './example/Replace/99.jpg'\n",
    "# # result = process_reaction_image(image_path)\n",
    "# # print(json.dumps(result, indent=4))\n",
    "# image_path = './example/example1/replace/Nesting/283.jpg'\n",
    "# image = Image.open(image_path).convert('RGB')\n",
    "# image_np = np.array(image)\n",
    "\n",
    "# # input1 = get_multi_molecular_text_to_correct_withatoms('./example/example1/replace/Nesting/283.jpg')\n",
    "# # input2 = get_reaction('./example/example1/replace/Nesting/283.jpg')\n",
    "# # print(input1)\n",
    "# # print(input2)\n",
    "# #reaction_results = model.extract_reactions_from_figures([image_np])\n",
    "# coorf = model.extract_molecule_corefs_from_figures([image_np])\n",
    "# print(coorf)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import base64\n",
    "import torch\n",
    "import json\n",
    "from PIL import Image\n",
    "import numpy as np\n",
    "from openai import AzureOpenAI\n",
    "\n",
    "def process_reaction_image_final(image_path: str) -> dict:\n",
    "    \"\"\"\n",
    "\n",
    "    Args:\n",
    "        image_path (str): 图像文件路径。\n",
    "\n",
    "    Returns:\n",
    "        dict: 整理后的反应数据,包括反应物、产物和反应模板。\n",
    "    \"\"\"\n",
    "    # 配置 API Key 和 Azure Endpoint\n",
    "    api_key = \"b038da96509b4009be931e035435e022\"  # 替换为实际的 API Key\n",
    "    azure_endpoint = \"https://hkust.azure-api.net\"  # 替换为实际的 Azure Endpoint\n",
    "    \n",
    "\n",
    "    model = ChemIEToolkit(device=torch.device('cpu'))\n",
    "    client = AzureOpenAI(\n",
    "        api_key=api_key,\n",
    "        api_version='2024-06-01',\n",
    "        azure_endpoint=azure_endpoint\n",
    "    )\n",
    "\n",
    "    # 加载图像并编码为 Base64\n",
    "    def encode_image(image_path: str):\n",
    "        with open(image_path, \"rb\") as image_file:\n",
    "            return base64.b64encode(image_file.read()).decode('utf-8')\n",
    "\n",
    "    base64_image = encode_image(image_path)\n",
    "\n",
    "    # GPT 工具调用配置\n",
    "    tools = [\n",
    "        {\n",
    "            'type': 'function',\n",
    "            'function': {\n",
    "                'name': 'get_multi_molecular_text_to_correct',\n",
    "                'description': 'Extracts the SMILES string and text coref from molecular sub-images from a reaction image and ready for further process.',\n",
    "                'parameters': {\n",
    "                    'type': 'object',\n",
    "                    'properties': {\n",
    "                        'image_path': {\n",
    "                            'type': 'string',\n",
    "                            'description': 'Path to the reaction image.'\n",
    "                        }\n",
    "                    },\n",
    "                    'required': ['image_path'],\n",
    "                    'additionalProperties': False\n",
    "                }\n",
    "            }\n",
    "        },\n",
    "        {\n",
    "        'type': 'function',\n",
    "        'function': {\n",
    "            'name': 'get_reaction',\n",
    "            'description': 'Get a list of reactions from a reaction image. A reaction contains data of the reactants, conditions, and products.',\n",
    "            'parameters': {\n",
    "                'type': 'object',\n",
    "                'properties': {\n",
    "                    'image_path': {\n",
    "                        'type': 'string',\n",
    "                        'description': 'The path to the reaction image.',\n",
    "                    },\n",
    "                },\n",
    "                'required': ['image_path'],\n",
    "                'additionalProperties': False,\n",
    "            },\n",
    "        },\n",
    "            },\n",
    "\n",
    "        \n",
    "\n",
    "            {\n",
    "        'type': 'function',\n",
    "        'function': {\n",
    "            'name': 'process_reaction_image_with_multiple_products',\n",
    "            'description': 'process the reaction image that contains a multiple products table. Get a list of reactions from the reaction image, Inculding the reaction template and detailed reaction with detailed R-group information.',\n",
    "            'parameters': {\n",
    "                'type': 'object',\n",
    "                'properties': {\n",
    "                    'image_path': {\n",
    "                        'type': 'string',\n",
    "                        'description': 'The path to the reaction image.',\n",
    "                    },\n",
    "                },\n",
    "                'required': ['image_path'],\n",
    "                'additionalProperties': False,\n",
    "            },\n",
    "        },\n",
    "            },\n",
    "\n",
    "            {\n",
    "        'type': 'function',\n",
    "        'function': {\n",
    "            'name': 'get_full_reaction',\n",
    "            'description': 'Get a list of reactions from a reaction image without any tables. A reaction contains data of the reactants, conditions, and products.',\n",
    "            'parameters': {\n",
    "                'type': 'object',\n",
    "                'properties': {\n",
    "                    'image_path': {\n",
    "                        'type': 'string',\n",
    "                        'description': 'The path to the reaction image.',\n",
    "                    },\n",
    "                },\n",
    "                'required': ['image_path'],\n",
    "                'additionalProperties': False,\n",
    "            },\n",
    "        },\n",
    "            },\n",
    "\n",
    "        {\n",
    "        'type': 'function',\n",
    "        'function': {\n",
    "            'name': 'get_multi_molecular',\n",
    "            'description': 'Extracts the SMILES string and text coref from a molecular image without any reactions',\n",
    "            'parameters': {\n",
    "                'type': 'object',\n",
    "                'properties': {\n",
    "                    'image_path': {\n",
    "                        'type': 'string',\n",
    "                        'description': 'The path to the reaction image.',\n",
    "                    },\n",
    "                },\n",
    "                'required': ['image_path'],\n",
    "                'additionalProperties': False,\n",
    "            },\n",
    "        },\n",
    "            },\n",
    "    ]\n",
    "\n",
    "    # 提供给 GPT 的消息内容\n",
    "    with open('./prompt_final.txt', 'r') as prompt_file:\n",
    "        prompt = prompt_file.read()\n",
    "    messages = [\n",
    "        {'role': 'system', 'content': 'You are a helpful assistant.'},\n",
    "        {\n",
    "            'role': 'user',\n",
    "            'content': [\n",
    "                {'type': 'text', 'text': prompt},\n",
    "                {'type': 'image_url', 'image_url': {'url': f'data:image/png;base64,{base64_image}'}}\n",
    "            ]\n",
    "        }\n",
    "    ]\n",
    "\n",
    "    # 调用 GPT 接口\n",
    "    response = client.chat.completions.create(\n",
    "    model = 'gpt-4o',\n",
    "    temperature = 0,\n",
    "    response_format={ 'type': 'json_object' },\n",
    "    messages = [\n",
    "        {'role': 'system', 'content': 'You are a helpful assistant.'},\n",
    "        {\n",
    "            'role': 'user',\n",
    "            'content': [\n",
    "                {\n",
    "                    'type': 'text',\n",
    "                    'text': prompt\n",
    "                },\n",
    "                {\n",
    "                    'type': 'image_url',\n",
    "                    'image_url': {\n",
    "                        'url': f'data:image/png;base64,{base64_image}'\n",
    "                    }\n",
    "                }\n",
    "            ]},\n",
    "    ],\n",
    "    tools = tools)\n",
    "    \n",
    "# Step 1: 工具映射表\n",
    "    TOOL_MAP = {\n",
    "        'get_multi_molecular_text_to_correct': get_multi_molecular_text_to_correct,\n",
    "        'get_reaction': get_reaction,\n",
    "        'process_reaction_image_with_multiple_products':process_reaction_image_with_multiple_products,\n",
    "\n",
    "        'get_full_reaction': get_full_reaction,\n",
    "        'get_multi_molecular':get_multi_molecular,\n",
    "    }\n",
    "\n",
    "    # Step 2: 处理多个工具调用\n",
    "    tool_calls = response.choices[0].message.tool_calls\n",
    "    results = []\n",
    "\n",
    "    # 遍历每个工具调用\n",
    "    for tool_call in tool_calls:\n",
    "        tool_name = tool_call.function.name\n",
    "        tool_arguments = tool_call.function.arguments\n",
    "        tool_call_id = tool_call.id\n",
    "        \n",
    "        tool_args = json.loads(tool_arguments)\n",
    "        \n",
    "        if tool_name in TOOL_MAP:\n",
    "            # 调用工具并获取结果\n",
    "            tool_result = TOOL_MAP[tool_name](image_path)\n",
    "        else:\n",
    "            raise ValueError(f\"Unknown tool called: {tool_name}\")\n",
    "        \n",
    "        # 保存每个工具调用结果\n",
    "        results.append({\n",
    "            'role': 'tool',\n",
    "            'content': json.dumps({\n",
    "                'image_path': image_path,\n",
    "                f'{tool_name}':(tool_result),\n",
    "            }),\n",
    "            'tool_call_id': tool_call_id,\n",
    "        })\n",
    "\n",
    "\n",
    "# Prepare the chat completion payload\n",
    "    completion_payload = {\n",
    "        'model': 'gpt-4o',\n",
    "        'messages': [\n",
    "            {'role': 'system', 'content': 'You are a helpful assistant.'},\n",
    "            {\n",
    "                'role': 'user',\n",
    "                'content': [\n",
    "                    {\n",
    "                        'type': 'text',\n",
    "                        'text': prompt\n",
    "                    },\n",
    "                    {\n",
    "                        'type': 'image_url',\n",
    "                        'image_url': {\n",
    "                            'url': f'data:image/png;base64,{base64_image}'\n",
    "                        }\n",
    "                    }\n",
    "                ]\n",
    "            },\n",
    "            response.choices[0].message,\n",
    "            *results\n",
    "            ],\n",
    "    }\n",
    "\n",
    "# Generate new response\n",
    "    response = client.chat.completions.create(\n",
    "        model=completion_payload[\"model\"],\n",
    "        messages=completion_payload[\"messages\"],\n",
    "        response_format={ 'type': 'json_object' },\n",
    "        temperature=0\n",
    "    )\n",
    "\n",
    "\n",
    "    \n",
    "    # 获取 GPT 生成的结果\n",
    "    gpt_output = json.loads(response.choices[0].message.content)\n",
    "    print(gpt_output)\n",
    "    return gpt_output\n",
    "\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "image_path = './data/bowen-4/2.png'\n",
    "result = process_reaction_image_final(image_path)\n",
    "print(json.dumps(result, indent=4))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# def get_reaction(image_path: str) -> list:\n",
    "#     '''Returns a list of reactions extracted from the image.'''\n",
    "#     image_file = image_path\n",
    "#     return json.dumps(model1.predict_image_file(image_file, molscribe=True, ocr=True))\n",
    "\n",
    "# reaction_output = get_reaction('./pdf/2/2_image_3_1.png')\n",
    "# print(reaction_output)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import fitz  # PyMuPDF\n",
    "from core import run_visualheist\n",
    "import base64\n",
    "from openai import AzureOpenAI\n",
    "\n",
    "def full_pdf_extraction_pipeline_with_history(pdf_path,\n",
    "                                  output_dir,\n",
    "                                  api_key,\n",
    "                                  azure_endpoint,\n",
    "                                  model=\"gpt-4o\",\n",
    "                                  model_size=\"large\"):\n",
    "    \"\"\"\n",
    "    Full pipeline: from PDF to GPT-annotated related text.\n",
    "    Extracts markdown + figures + reaction data from a PDF and calls GPT-4o to annotate them.\n",
    "\n",
    "    Args:\n",
    "        pdf_path (str): Path to input PDF file.\n",
    "        output_dir (str): Directory to save results.\n",
    "        api_key (str): Azure OpenAI API key.\n",
    "        azure_endpoint (str): Azure OpenAI endpoint.\n",
    "        model (str): GPT model name (default \"gpt-4o\").\n",
    "        model_size (str): VisualHeist model size (\"base\", \"large\", etc).\n",
    "\n",
    "    Returns:\n",
    "        List of GPT-generated annotated related-text JSONs.\n",
    "    \"\"\"\n",
    "\n",
    "\n",
    "    os.makedirs(output_dir, exist_ok=True)\n",
    "\n",
    "    # Step 1: Extract Markdown text\n",
    "    doc = fitz.open(pdf_path)\n",
    "    md_text = \"\"\n",
    "    for i, page in enumerate(doc, start=1):\n",
    "        md_text += f\"\\n\\n## = Page {i} =\\n\\n\" + page.get_text()\n",
    "    filename = os.path.splitext(os.path.basename(pdf_path))[0]\n",
    "    md_path = os.path.join(output_dir, f\"{filename}.md\")\n",
    "    with open(md_path, \"w\", encoding=\"utf-8\") as f:\n",
    "        f.write(md_text.strip())\n",
    "    print(f\"[✓] Markdown saved to: {md_path}\")\n",
    "\n",
    "    # Step 2: Extract figures using VisualHeist\n",
    "    run_visualheist(pdf_dir=pdf_path, model_size=model_size, image_dir=output_dir)\n",
    "    print(f\"[✓] Figures extracted to: {output_dir}\")\n",
    "\n",
    "    # Step 3: Parse figures to JSON\n",
    "    image_data = []\n",
    "    known_molecules = []\n",
    "\n",
    "    for fname in sorted(os.listdir(output_dir)):\n",
    "        if fname.endswith(\".png\"):\n",
    "            img_path = os.path.join(output_dir, fname)\n",
    "            try:\n",
    "                result = process_reaction_image_final(img_path)\n",
    "                result[\"image_name\"] = fname\n",
    "                image_data.append(result)\n",
    "            except Exception as e:\n",
    "                print(f\"[!] Failed on {fname}: {e}\")\n",
    "                new_mols_json = get_multi_molecular_text_to_correct(img_path)\n",
    "                new_mols = json.loads(new_mols_json)\n",
    "                for m in new_mols:\n",
    "                    if m[\"smiles\"] not in {km[\"smiles\"] for km in known_molecules}:\n",
    "                        known_molecules.append(m)\n",
    "\n",
    "\n",
    "    json_path = os.path.join(output_dir, f\"{filename}_reaction_data.json\")\n",
    "    with open(json_path, \"w\", encoding=\"utf-8\") as f:\n",
    "        json.dump(image_data, f, indent=2, ensure_ascii=False)\n",
    "    print(f\"[✓] Reaction data saved to: {json_path}\")\n",
    "\n",
    "    # Step 4: Call Azure GPT-4 for annotation\n",
    "    client = AzureOpenAI(\n",
    "        api_key=api_key,\n",
    "        api_version=\"2024-06-01\",\n",
    "        azure_endpoint=azure_endpoint\n",
    "    )\n",
    "\n",
    "    prompt = \"\"\"\n",
    "You are a text-mining assistant for chemistry papers. Your task is to find the most relevant 1–3 sentences in a research article that describe a given figure or scheme.\n",
    "\n",
    "You will be given:\n",
    "- A block of text extracted from the article (in Markdown format).\n",
    "- The extracted structured data from one image (including its title and list of molecules or reactions).\n",
    "\n",
    "Your task is:\n",
    "1. Match the image with sentences that are most relevant to it. Use clues like the figure/scheme/table number in the title, or molecule/reaction labels (e.g., 1a, 2b, 3).\n",
    "2. Extract up to 3 short sentences that best describe or mention the contents of the image.\n",
    "3. In these sentences, label any molecule or reaction identifiers (like “1a”, “2b”) with their role based on context: [reactant], [product], etc.\n",
    "4. Also label experimental conditions with their roles:\n",
    "   - Percent values like “85%” as [yield]\n",
    "   - Temperatures like “100 °C” as [temperature]\n",
    "   - Time durations like “24 h”, “20 min” as [time]\n",
    "5. Do **not** label chemical position numbers (e.g., in \"3-trifluoromethyl\", \"1,2,4-triazole\").\n",
    "6. Do not repeat any labels. Only label each item once per sentence.\n",
    "\n",
    "Output format:\n",
    "{\n",
    "  \"title\": \"<title from image>\",\n",
    "  \"related-text\": [\n",
    "    \"Sentence with roles like 1a[reactant], 2c[product], 100[temperature] °C.\",\n",
    "    ...\n",
    "  ]\n",
    "}\n",
    "\"\"\"\n",
    "\n",
    "    annotated_results = []\n",
    "    for item in image_data:\n",
    "        img_path = os.path.join(output_dir, item[\"image_name\"])\n",
    "        with open(img_path, \"rb\") as f:\n",
    "            base64_image = base64.b64encode(f.read()).decode(\"utf-8\")\n",
    "\n",
    "        combined_input = f\"\"\"\n",
    "## Image Structured Data:\n",
    "{json.dumps(item, indent=2)}\n",
    "\n",
    "## Article Text:\n",
    "{md_text}\n",
    "\"\"\"\n",
    "\n",
    "        response = client.chat.completions.create(\n",
    "            model=model,\n",
    "            temperature=0,\n",
    "            response_format=\"json\",\n",
    "            messages=[\n",
    "                {\"role\": \"system\", \"content\": \"You are a helpful assistant.\"},\n",
    "                {\n",
    "                    \"role\": \"user\",\n",
    "                    \"content\": [\n",
    "                        {\"type\": \"text\", \"text\": prompt + \"\\n\\n\" + combined_input},\n",
    "                        {\n",
    "                            \"type\": \"image_url\",\n",
    "                            \"image_url\": {\n",
    "                                \"url\": f\"data:image/png;base64,{base64_image}\"\n",
    "                            }\n",
    "                        }\n",
    "                    ]\n",
    "                }\n",
    "            ]\n",
    "        )\n",
    "        annotated_results.append(json.loads(response.choices[0].message.content))\n",
    "\n",
    "    # Optionally save output\n",
    "    with open(os.path.join(output_dir, f\"{filename}_annotated_related_text.json\"), \"w\", encoding=\"utf-8\") as f:\n",
    "        json.dump(annotated_results, f, indent=2, ensure_ascii=False)\n",
    "    print(f\"[✓] Annotated related-text saved.\")\n",
    "\n",
    "    return annotated_results"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "image_path = './data/example/example1/replace/Nesting/283.jpg'\n",
    "#image_path = './pdf/2/2_image_1_1.png'\n",
    "result = process_reaction_image_final(image_path)\n",
    "print(json.dumps(result, indent=4))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# import os\n",
    "\n",
    "# image_folder = './example/example1/replace/regular/'  # 图片文件夹路径\n",
    "# output_folder = './batches_final_repalce_regular/'  # 保存每批结果的文件夹路径\n",
    "# batch_size = 3  # 每批处理文件数量\n",
    "\n",
    "# # 创建保存批次结果的文件夹(如果不存在)\n",
    "# os.makedirs(output_folder, exist_ok=True)\n",
    "\n",
    "# # 获取所有图片文件并按字母顺序排序\n",
    "# all_files = sorted([f for f in os.listdir(image_folder) if f.endswith('.jpg')])\n",
    "\n",
    "# # 获取已完成的批次\n",
    "# completed_batches = [\n",
    "#     int(f.split('_')[1].split('.')[0]) for f in os.listdir(output_folder) if f.startswith('batch_') and f.endswith('.json')\n",
    "# ]\n",
    "# completed_batches = sorted(completed_batches)  # 确保按顺序排序\n",
    "\n",
    "# # 从指定批次开始(如果有未完成批次)\n",
    "# start_batch = (completed_batches[-1] + 1) if completed_batches else 1\n",
    "\n",
    "# # 将文件分批并从指定批次开始\n",
    "# for batch_index in range((start_batch - 1) * batch_size, len(all_files), batch_size):\n",
    "#     batch_files = all_files[batch_index:batch_index + batch_size]\n",
    "#     results = []\n",
    "\n",
    "#     batch_number = batch_index // batch_size + 1\n",
    "#     print(f\"正在按字母顺序处理第 {batch_number} 批,共 {len(batch_files)} 张图片...\")\n",
    "    \n",
    "#     for file_name in batch_files:\n",
    "#         image_path = os.path.join(image_folder, file_name)\n",
    "#         print(f\"处理文件 {file_name}...\")\n",
    "        \n",
    "#         try:\n",
    "#             # 处理单个图片\n",
    "#             result = process_reaction_image_final(image_path)\n",
    "            \n",
    "#             # 确保结果是字典\n",
    "#             if isinstance(result, dict):\n",
    "#                 # 添加文件名信息\n",
    "#                 result_with_filename = {\n",
    "#                     \"file_name\": file_name,\n",
    "#                     **result\n",
    "#                 }\n",
    "#                 results.append(result_with_filename)\n",
    "#                 print(result_with_filename)\n",
    "#             else:\n",
    "#                 print(f\"文件 {file_name} 的处理结果不是字典,跳过。\")\n",
    "        \n",
    "#         except Exception as e:\n",
    "#             print(f\"处理文件 {file_name} 时出错: {e}\")\n",
    "\n",
    "#     # 保存当前批次结果\n",
    "#     batch_output_path = os.path.join(output_folder, f'batch_{batch_number}.json')\n",
    "#     with open(batch_output_path, 'w', encoding='utf-8') as json_file:\n",
    "#         json.dump(results, json_file, ensure_ascii=False, indent=4)\n",
    "\n",
    "#     print(f\"第 {batch_number} 批处理完成,结果保存到 {batch_output_path}\")\n",
    "\n",
    "# print(\"所有批次处理完成!\")\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import rdkit\n",
    "from rdkit import Chem\n",
    "from rdkit.Chem import Draw\n",
    "\n",
    "Draw.MolToImage(Chem.MolFromSmiles('[Si](C)(C)OC(c1ccccc1)(c1ccccc1)C1CCC2=NN(Cc3ccccc3)=CN21'))"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "openchemie",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.14"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}