Spaces:
Sleeping
Sleeping
File size: 17,183 Bytes
1f516b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
import sys
import torch
import json
from chemietoolkit import ChemIEToolkit
import cv2
from PIL import Image
import json
import sys
#sys.path.append('./RxnScribe-main/')
import torch
from rxnscribe import RxnScribe
import json
from molscribe.chemistry import _convert_graph_to_smiles
from openai import AzureOpenAI
import base64
import numpy as np
from chemietoolkit import utils
from PIL import Image
ckpt_path = "./pix2seq_reaction_full.ckpt"
model1 = RxnScribe(ckpt_path, device=torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
device = torch.device(('cuda' if torch.cuda.is_available() else 'cpu'))
model = ChemIEToolkit(device=torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
def get_reaction(image_path: str) -> dict:
'''
Returns a structured dictionary of reactions extracted from the image,
including reactants, conditions, and products, with their smiles, text, and bbox.
'''
image_file = image_path
raw_prediction = model1.predict_image_file(image_file, molscribe=True, ocr=True)
# Ensure raw_prediction is treated as a list directly
structured_output = {}
for section_key in ['reactants', 'conditions', 'products']:
if section_key in raw_prediction[0]:
structured_output[section_key] = []
for item in raw_prediction[0][section_key]:
if section_key in ['reactants', 'products']:
# Extract smiles and bbox for molecules
structured_output[section_key].append({
"smiles": item.get("smiles", ""),
"bbox": item.get("bbox", []),
"symbols": item.get("symbols", [])
})
elif section_key == 'conditions':
# Extract smiles, text, and bbox for conditions
condition_data = {"bbox": item.get("bbox", [])}
if "smiles" in item:
condition_data["smiles"] = item.get("smiles", "")
if "text" in item:
condition_data["text"] = item.get("text", [])
structured_output[section_key].append(condition_data)
print(structured_output)
return structured_output
def get_full_reaction(image_path: str) -> dict:
'''
Returns a structured dictionary of reactions extracted from the image,
including reactants, conditions, and products, with their smiles, text, and bbox.
'''
image_file = image_path
raw_prediction = model1.predict_image_file(image_file, molscribe=True, ocr=True)
return raw_prediction
def get_reaction_withatoms(image_path: str) -> dict:
"""
Args:
image_path (str): 图像文件路径。
Returns:
dict: 整理后的反应数据,包括反应物、产物和反应模板。
"""
# 配置 API Key 和 Azure Endpoint
api_key = "b038da96509b4009be931e035435e022" # 替换为实际的 API Key
azure_endpoint = "https://hkust.azure-api.net" # 替换为实际的 Azure Endpoint
model = ChemIEToolkit(device=torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
client = AzureOpenAI(
api_key=api_key,
api_version='2024-06-01',
azure_endpoint=azure_endpoint
)
# 加载图像并编码为 Base64
def encode_image(image_path: str):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
base64_image = encode_image(image_path)
# GPT 工具调用配置
tools = [
{
'type': 'function',
'function': {
'name': 'get_reaction',
'description': 'Get a list of reactions from a reaction image. A reaction contains data of the reactants, conditions, and products.',
'parameters': {
'type': 'object',
'properties': {
'image_path': {
'type': 'string',
'description': 'The path to the reaction image.',
},
},
'required': ['image_path'],
'additionalProperties': False,
},
},
},
]
# 提供给 GPT 的消息内容
with open('./prompt_getreaction.txt', 'r') as prompt_file:
prompt = prompt_file.read()
messages = [
{'role': 'system', 'content': 'You are a helpful assistant.'},
{
'role': 'user',
'content': [
{'type': 'text', 'text': prompt},
{'type': 'image_url', 'image_url': {'url': f'data:image/png;base64,{base64_image}'}}
]
}
]
# 调用 GPT 接口
response = client.chat.completions.create(
model = 'gpt-4o',
temperature = 0,
response_format={ 'type': 'json_object' },
messages = [
{'role': 'system', 'content': 'You are a helpful assistant.'},
{
'role': 'user',
'content': [
{
'type': 'text',
'text': prompt
},
{
'type': 'image_url',
'image_url': {
'url': f'data:image/png;base64,{base64_image}'
}
}
]},
],
tools = tools)
# Step 1: 工具映射表
TOOL_MAP = {
'get_reaction': get_reaction,
}
# Step 2: 处理多个工具调用
tool_calls = response.choices[0].message.tool_calls
results = []
# 遍历每个工具调用
for tool_call in tool_calls:
tool_name = tool_call.function.name
tool_arguments = tool_call.function.arguments
tool_call_id = tool_call.id
tool_args = json.loads(tool_arguments)
if tool_name in TOOL_MAP:
# 调用工具并获取结果
tool_result = TOOL_MAP[tool_name](image_path)
else:
raise ValueError(f"Unknown tool called: {tool_name}")
# 保存每个工具调用结果
results.append({
'role': 'tool',
'content': json.dumps({
'image_path': image_path,
f'{tool_name}':(tool_result),
}),
'tool_call_id': tool_call_id,
})
# Prepare the chat completion payload
completion_payload = {
'model': 'gpt-4o',
'messages': [
{'role': 'system', 'content': 'You are a helpful assistant.'},
{
'role': 'user',
'content': [
{
'type': 'text',
'text': prompt
},
{
'type': 'image_url',
'image_url': {
'url': f'data:image/png;base64,{base64_image}'
}
}
]
},
response.choices[0].message,
*results
],
}
# Generate new response
response = client.chat.completions.create(
model=completion_payload["model"],
messages=completion_payload["messages"],
response_format={ 'type': 'json_object' },
temperature=0
)
# 获取 GPT 生成的结果
gpt_output = json.loads(response.choices[0].message.content)
print(f"gpt_output1:{gpt_output}")
def get_reaction_full(image_path: str) -> dict:
'''
Returns a structured dictionary of reactions extracted from the image,
including reactants, conditions, and products, with their smiles, text, and bbox.
'''
image_file = image_path
raw_prediction = model1.predict_image_file(image_file, molscribe=True, ocr=True)
return raw_prediction
input2 = get_reaction_full(image_path)
def update_input_with_symbols(input1, input2, conversion_function):
symbol_mapping = {}
for key in ['reactants', 'products']:
for item in input1.get(key, []):
bbox = tuple(item['bbox']) # 使用 bbox 作为唯一标识
symbol_mapping[bbox] = item['symbols']
for key in ['reactants', 'products']:
for item in input2.get(key, []):
bbox = tuple(item['bbox']) # 获取 bbox 作为匹配键
# 如果 bbox 存在于 input1 的映射中,则更新 symbols
if bbox in symbol_mapping:
updated_symbols = symbol_mapping[bbox]
item['symbols'] = updated_symbols
# 更新 atoms 的 atom_symbol
if 'atoms' in item:
atoms = item['atoms']
if len(atoms) != len(updated_symbols):
print(f"Warning: Mismatched symbols and atoms in bbox {bbox}")
else:
for atom, symbol in zip(atoms, updated_symbols):
atom['atom_symbol'] = symbol
# 如果 coords 和 edges 存在,调用转换函数生成新的 smiles 和 molfile
if 'coords' in item and 'edges' in item:
coords = item['coords']
edges = item['edges']
new_smiles, new_molfile, _ = conversion_function(coords, updated_symbols, edges)
# 替换旧的 smiles 和 molfile
item['smiles'] = new_smiles
item['molfile'] = new_molfile
return input2
updated_data = [update_input_with_symbols(gpt_output, input2[0], _convert_graph_to_smiles)]
return updated_data
def get_reaction_withatoms_correctR(image_path: str) -> dict:
"""
Args:
image_path (str): 图像文件路径。
Returns:
dict: 整理后的反应数据,包括反应物、产物和反应模板。
"""
# 配置 API Key 和 Azure Endpoint
api_key = "b038da96509b4009be931e035435e022" # 替换为实际的 API Key
azure_endpoint = "https://hkust.azure-api.net" # 替换为实际的 Azure Endpoint
model = ChemIEToolkit(device=torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
client = AzureOpenAI(
api_key=api_key,
api_version='2024-06-01',
azure_endpoint=azure_endpoint
)
# 加载图像并编码为 Base64
def encode_image(image_path: str):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
base64_image = encode_image(image_path)
# GPT 工具调用配置
tools = [
{
'type': 'function',
'function': {
'name': 'get_reaction',
'description': 'Get a list of reactions from a reaction image. A reaction contains data of the reactants, conditions, and products.',
'parameters': {
'type': 'object',
'properties': {
'image_path': {
'type': 'string',
'description': 'The path to the reaction image.',
},
},
'required': ['image_path'],
'additionalProperties': False,
},
},
},
]
# 提供给 GPT 的消息内容
with open('./prompt_getreaction_correctR.txt', 'r') as prompt_file:
prompt = prompt_file.read()
messages = [
{'role': 'system', 'content': 'You are a helpful assistant.'},
{
'role': 'user',
'content': [
{'type': 'text', 'text': prompt},
{'type': 'image_url', 'image_url': {'url': f'data:image/png;base64,{base64_image}'}}
]
}
]
# 调用 GPT 接口
response = client.chat.completions.create(
model = 'gpt-4o',
temperature = 0,
response_format={ 'type': 'json_object' },
messages = [
{'role': 'system', 'content': 'You are a helpful assistant.'},
{
'role': 'user',
'content': [
{
'type': 'text',
'text': prompt
},
{
'type': 'image_url',
'image_url': {
'url': f'data:image/png;base64,{base64_image}'
}
}
]},
],
tools = tools)
# Step 1: 工具映射表
TOOL_MAP = {
'get_reaction': get_reaction,
}
# Step 2: 处理多个工具调用
tool_calls = response.choices[0].message.tool_calls
results = []
# 遍历每个工具调用
for tool_call in tool_calls:
tool_name = tool_call.function.name
tool_arguments = tool_call.function.arguments
tool_call_id = tool_call.id
tool_args = json.loads(tool_arguments)
if tool_name in TOOL_MAP:
# 调用工具并获取结果
tool_result = TOOL_MAP[tool_name](image_path)
else:
raise ValueError(f"Unknown tool called: {tool_name}")
# 保存每个工具调用结果
results.append({
'role': 'tool',
'content': json.dumps({
'image_path': image_path,
f'{tool_name}':(tool_result),
}),
'tool_call_id': tool_call_id,
})
# Prepare the chat completion payload
completion_payload = {
'model': 'gpt-4o',
'messages': [
{'role': 'system', 'content': 'You are a helpful assistant.'},
{
'role': 'user',
'content': [
{
'type': 'text',
'text': prompt
},
{
'type': 'image_url',
'image_url': {
'url': f'data:image/png;base64,{base64_image}'
}
}
]
},
response.choices[0].message,
*results
],
}
# Generate new response
response = client.chat.completions.create(
model=completion_payload["model"],
messages=completion_payload["messages"],
response_format={ 'type': 'json_object' },
temperature=0
)
# 获取 GPT 生成的结果
gpt_output = json.loads(response.choices[0].message.content)
print(f"gpt_output1:{gpt_output}")
def get_reaction_full(image_path: str) -> dict:
'''
Returns a structured dictionary of reactions extracted from the image,
including reactants, conditions, and products, with their smiles, text, and bbox.
'''
image_file = image_path
raw_prediction = model1.predict_image_file(image_file, molscribe=True, ocr=True)
return raw_prediction
input2 = get_reaction_full(image_path)
def update_input_with_symbols(input1, input2, conversion_function):
symbol_mapping = {}
for key in ['reactants', 'products']:
for item in input1.get(key, []):
bbox = tuple(item['bbox']) # 使用 bbox 作为唯一标识
symbol_mapping[bbox] = item['symbols']
for key in ['reactants', 'products']:
for item in input2.get(key, []):
bbox = tuple(item['bbox']) # 获取 bbox 作为匹配键
# 如果 bbox 存在于 input1 的映射中,则更新 symbols
if bbox in symbol_mapping:
updated_symbols = symbol_mapping[bbox]
item['symbols'] = updated_symbols
# 更新 atoms 的 atom_symbol
if 'atoms' in item:
atoms = item['atoms']
if len(atoms) != len(updated_symbols):
print(f"Warning: Mismatched symbols and atoms in bbox {bbox}")
else:
for atom, symbol in zip(atoms, updated_symbols):
atom['atom_symbol'] = symbol
# 如果 coords 和 edges 存在,调用转换函数生成新的 smiles 和 molfile
if 'coords' in item and 'edges' in item:
coords = item['coords']
edges = item['edges']
new_smiles, new_molfile, _ = conversion_function(coords, updated_symbols, edges)
# 替换旧的 smiles 和 molfile
item['smiles'] = new_smiles
item['molfile'] = new_molfile
return input2
updated_data = [update_input_with_symbols(gpt_output, input2[0], _convert_graph_to_smiles)]
print(f"updated_reaction_data:{updated_data}")
return updated_data |