Spaces:
Sleeping
Sleeping
File size: 19,943 Bytes
1f516b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 |
import sys
import torch
import json
from chemietoolkit import ChemIEToolkit
import cv2
from PIL import Image
import json
import sys
#sys.path.append('./RxnScribe-main/')
import torch
from rxnscribe import RxnScribe
import json
import sys
import torch
import json
model = ChemIEToolkit(device=torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
from molscribe.chemistry import _convert_graph_to_smiles
import base64
import torch
import json
from PIL import Image
import numpy as np
from chemietoolkit import ChemIEToolkit, utils
from openai import AzureOpenAI
import os
ckpt_path = "./pix2seq_reaction_full.ckpt"
model1 = RxnScribe(ckpt_path, device=torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
device = torch.device(('cuda' if torch.cuda.is_available() else 'cpu'))
model = ChemIEToolkit(device=torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
def get_multi_molecular(image_path: str) -> list:
'''Returns a list of reactions extracted from the image.'''
# 打开图像文件
image = Image.open(image_path).convert('RGB')
# 将图像作为输入传递给模型
coref_results = model.extract_molecule_corefs_from_figures([image])
for item in coref_results:
for bbox in item.get("bboxes", []):
for key in ["category", "molfile", "symbols", 'atoms', "bonds", 'category_id', 'score', 'corefs']: #'atoms'
bbox.pop(key, None) # 安全地移除键
print(json.dumps(coref_results))
# 返回反应列表,使用 json.dumps 进行格式化
return json.dumps(coref_results)
def get_multi_molecular_text_to_correct(image_path: str) -> list:
'''Returns a list of reactions extracted from the image.'''
# 打开图像文件
image = Image.open(image_path).convert('RGB')
# 将图像作为输入传递给模型
coref_results = model.extract_molecule_corefs_from_figures([image])
for item in coref_results:
for bbox in item.get("bboxes", []):
for key in ["category", "bbox", "molfile", "symbols", 'atoms', "bonds", 'category_id', 'score', 'corefs']: #'atoms'
bbox.pop(key, None) # 安全地移除键
print(json.dumps(coref_results))
# 返回反应列表,使用 json.dumps 进行格式化
return json.dumps(coref_results)
def get_multi_molecular_text_to_correct_withatoms(image_path: str) -> list:
'''Returns a list of reactions extracted from the image.'''
# 打开图像文件
image = Image.open(image_path).convert('RGB')
# 将图像作为输入传递给模型
coref_results = model.extract_molecule_corefs_from_figures([image])
for item in coref_results:
for bbox in item.get("bboxes", []):
for key in ["coords","edges","molfile", 'atoms', "bonds", 'category_id', 'score', 'corefs']: #'atoms'
bbox.pop(key, None) # 安全地移除键
print(json.dumps(coref_results))
# 返回反应列表,使用 json.dumps 进行格式化
return json.dumps(coref_results)
def process_reaction_image_with_multiple_products_and_text(image_path: str) -> dict:
"""
Args:
image_path (str): 图像文件路径。
Returns:
dict: 整理后的反应数据,包括反应物、产物和反应模板。
"""
# 配置 API Key 和 Azure Endpoint
api_key = os.getenv("CHEMEAGLE_API_KEY")
if not api_key:
raise RuntimeError("Missing CHEMEAGLE_API_KEY environment variable")
# 替换为实际的 API Key
azure_endpoint = "https://hkust.azure-api.net" # 替换为实际的 Azure Endpoint
model = ChemIEToolkit(device=torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
client = AzureOpenAI(
api_key=api_key,
api_version='2024-06-01',
azure_endpoint=azure_endpoint
)
# 加载图像并编码为 Base64
def encode_image(image_path: str):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
base64_image = encode_image(image_path)
# GPT 工具调用配置
tools = [
{
'type': 'function',
'function': {
'name': 'get_multi_molecular_text_to_correct_withatoms',
'description': 'Extracts the SMILES string, the symbols set, and the text coref of all molecular images in a table-reaction image and ready to be correct.',
'parameters': {
'type': 'object',
'properties': {
'image_path': {
'type': 'string',
'description': 'The path to the reaction image.',
},
},
'required': ['image_path'],
'additionalProperties': False,
},
},
},
]
# 提供给 GPT 的消息内容
with open('./prompt_getmolecular.txt', 'r') as prompt_file:
prompt = prompt_file.read()
messages = [
{'role': 'system', 'content': 'You are a helpful assistant.'},
{
'role': 'user',
'content': [
{'type': 'text', 'text': prompt},
{'type': 'image_url', 'image_url': {'url': f'data:image/png;base64,{base64_image}'}}
]
}
]
# 调用 GPT 接口
response = client.chat.completions.create(
model = 'gpt-4o',
temperature = 0,
response_format={ 'type': 'json_object' },
messages = [
{'role': 'system', 'content': 'You are a helpful assistant.'},
{
'role': 'user',
'content': [
{
'type': 'text',
'text': prompt
},
{
'type': 'image_url',
'image_url': {
'url': f'data:image/png;base64,{base64_image}'
}
}
]},
],
tools = tools)
# Step 1: 工具映射表
TOOL_MAP = {
'get_multi_molecular_text_to_correct_withatoms': get_multi_molecular_text_to_correct_withatoms,
}
# Step 2: 处理多个工具调用
tool_calls = response.choices[0].message.tool_calls
results = []
# 遍历每个工具调用
for tool_call in tool_calls:
tool_name = tool_call.function.name
tool_arguments = tool_call.function.arguments
tool_call_id = tool_call.id
tool_args = json.loads(tool_arguments)
if tool_name in TOOL_MAP:
# 调用工具并获取结果
tool_result = TOOL_MAP[tool_name](image_path)
else:
raise ValueError(f"Unknown tool called: {tool_name}")
# 保存每个工具调用结果
results.append({
'role': 'tool',
'content': json.dumps({
'image_path': image_path,
f'{tool_name}':(tool_result),
}),
'tool_call_id': tool_call_id,
})
# Prepare the chat completion payload
completion_payload = {
'model': 'gpt-4o',
'messages': [
{'role': 'system', 'content': 'You are a helpful assistant.'},
{
'role': 'user',
'content': [
{
'type': 'text',
'text': prompt
},
{
'type': 'image_url',
'image_url': {
'url': f'data:image/png;base64,{base64_image}'
}
}
]
},
response.choices[0].message,
*results
],
}
# Generate new response
response = client.chat.completions.create(
model=completion_payload["model"],
messages=completion_payload["messages"],
response_format={ 'type': 'json_object' },
temperature=0
)
# 获取 GPT 生成的结果
gpt_output = [json.loads(response.choices[0].message.content)]
def get_multi_molecular(image_path: str) -> list:
'''Returns a list of reactions extracted from the image.'''
# 打开图像文件
image = Image.open(image_path).convert('RGB')
# 将图像作为输入传递给模型
coref_results = model.extract_molecule_corefs_from_figures([image])
return coref_results
coref_results = get_multi_molecular(image_path)
def update_symbols_in_atoms(input1, input2):
"""
用 input1 中更新后的 'symbols' 替换 input2 中对应 bboxes 的 'symbols',并同步更新 'atoms' 的 'atom_symbol'。
假设 input1 和 input2 的结构一致。
"""
for item1, item2 in zip(input1, input2):
bboxes1 = item1.get('bboxes', [])
bboxes2 = item2.get('bboxes', [])
if len(bboxes1) != len(bboxes2):
print("Warning: Mismatched number of bboxes!")
continue
for bbox1, bbox2 in zip(bboxes1, bboxes2):
# 更新 symbols
if 'symbols' in bbox1:
bbox2['symbols'] = bbox1['symbols'] # 更新 symbols
# 更新 atoms 的 atom_symbol
if 'symbols' in bbox1 and 'atoms' in bbox2:
symbols = bbox1['symbols']
atoms = bbox2.get('atoms', [])
# 确保 symbols 和 atoms 的长度一致
if len(symbols) != len(atoms):
print(f"Warning: Mismatched symbols and atoms in bbox {bbox1.get('bbox')}!")
continue
for atom, symbol in zip(atoms, symbols):
atom['atom_symbol'] = symbol # 更新 atom_symbol
return input2
input2_updated = update_symbols_in_atoms(gpt_output, coref_results)
def update_smiles_and_molfile(input_data, conversion_function):
"""
使用更新后的 'symbols'、'coords' 和 'edges' 调用 `conversion_function` 生成新的 'smiles' 和 'molfile',
并替换到原数据结构中。
参数:
- input_data: 包含 bboxes 的嵌套数据结构
- conversion_function: 函数,接受 'coords', 'symbols', 'edges' 并返回 (new_smiles, new_molfile, _)
返回:
- 更新后的数据结构
"""
for item in input_data:
for bbox in item.get('bboxes', []):
# 检查必需的键是否存在
if all(key in bbox for key in ['coords', 'symbols', 'edges']):
coords = bbox['coords']
symbols = bbox['symbols']
edges = bbox['edges']
# 调用转换函数生成新的 'smiles' 和 'molfile'
new_smiles, new_molfile, _ = conversion_function(coords, symbols, edges)
print(f" Generated 'smiles': {new_smiles}")
# 替换旧的 'smiles' 和 'molfile'
bbox['smiles'] = new_smiles
bbox['molfile'] = new_molfile
return input_data
updated_data = update_smiles_and_molfile(input2_updated, _convert_graph_to_smiles)
return updated_data
def process_reaction_image_with_multiple_products_and_text_correctR(image_path: str) -> dict:
"""
Args:
image_path (str): 图像文件路径。
Returns:
dict: 整理后的反应数据,包括反应物、产物和反应模板。
"""
# 配置 API Key 和 Azure Endpoint
api_key = os.getenv("CHEMEAGLE_API_KEY")
if not api_key:
raise RuntimeError("Missing CHEMEAGLE_API_KEY environment variable")
# 替换为实际的 API Key
azure_endpoint = "https://hkust.azure-api.net" # 替换为实际的 Azure Endpoint
model = ChemIEToolkit(device=torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
client = AzureOpenAI(
api_key=api_key,
api_version='2024-06-01',
azure_endpoint=azure_endpoint
)
# 加载图像并编码为 Base64
def encode_image(image_path: str):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
base64_image = encode_image(image_path)
# GPT 工具调用配置
tools = [
{
'type': 'function',
'function': {
'name': 'get_multi_molecular_text_to_correct_withatoms',
'description': 'Extracts the SMILES string, the symbols set, and the text coref of all molecular images in a table-reaction image and ready to be correct.',
'parameters': {
'type': 'object',
'properties': {
'image_path': {
'type': 'string',
'description': 'The path to the reaction image.',
},
},
'required': ['image_path'],
'additionalProperties': False,
},
},
},
]
# 提供给 GPT 的消息内容
with open('./prompt_getmolecular_correctR.txt', 'r') as prompt_file:
prompt = prompt_file.read()
messages = [
{'role': 'system', 'content': 'You are a helpful assistant.'},
{
'role': 'user',
'content': [
{'type': 'text', 'text': prompt},
{'type': 'image_url', 'image_url': {'url': f'data:image/png;base64,{base64_image}'}}
]
}
]
# 调用 GPT 接口
response = client.chat.completions.create(
model = 'gpt-4o',
temperature = 0,
response_format={ 'type': 'json_object' },
messages = [
{'role': 'system', 'content': 'You are a helpful assistant.'},
{
'role': 'user',
'content': [
{
'type': 'text',
'text': prompt
},
{
'type': 'image_url',
'image_url': {
'url': f'data:image/png;base64,{base64_image}'
}
}
]},
],
tools = tools)
# Step 1: 工具映射表
TOOL_MAP = {
'get_multi_molecular_text_to_correct_withatoms': get_multi_molecular_text_to_correct_withatoms,
}
# Step 2: 处理多个工具调用
tool_calls = response.choices[0].message.tool_calls
results = []
# 遍历每个工具调用
for tool_call in tool_calls:
tool_name = tool_call.function.name
tool_arguments = tool_call.function.arguments
tool_call_id = tool_call.id
tool_args = json.loads(tool_arguments)
if tool_name in TOOL_MAP:
# 调用工具并获取结果
tool_result = TOOL_MAP[tool_name](image_path)
else:
raise ValueError(f"Unknown tool called: {tool_name}")
# 保存每个工具调用结果
results.append({
'role': 'tool',
'content': json.dumps({
'image_path': image_path,
f'{tool_name}':(tool_result),
}),
'tool_call_id': tool_call_id,
})
# Prepare the chat completion payload
completion_payload = {
'model': 'gpt-4o',
'messages': [
{'role': 'system', 'content': 'You are a helpful assistant.'},
{
'role': 'user',
'content': [
{
'type': 'text',
'text': prompt
},
{
'type': 'image_url',
'image_url': {
'url': f'data:image/png;base64,{base64_image}'
}
}
]
},
response.choices[0].message,
*results
],
}
# Generate new response
response = client.chat.completions.create(
model=completion_payload["model"],
messages=completion_payload["messages"],
response_format={ 'type': 'json_object' },
temperature=0
)
# 获取 GPT 生成的结果
gpt_output = [json.loads(response.choices[0].message.content)]
def get_multi_molecular(image_path: str) -> list:
'''Returns a list of reactions extracted from the image.'''
# 打开图像文件
image = Image.open(image_path).convert('RGB')
# 将图像作为输入传递给模型
coref_results = model.extract_molecule_corefs_from_figures([image])
return coref_results
coref_results = get_multi_molecular(image_path)
def update_symbols_in_atoms(input1, input2):
"""
用 input1 中更新后的 'symbols' 替换 input2 中对应 bboxes 的 'symbols',并同步更新 'atoms' 的 'atom_symbol'。
假设 input1 和 input2 的结构一致。
"""
for item1, item2 in zip(input1, input2):
bboxes1 = item1.get('bboxes', [])
bboxes2 = item2.get('bboxes', [])
if len(bboxes1) != len(bboxes2):
print("Warning: Mismatched number of bboxes!")
continue
for bbox1, bbox2 in zip(bboxes1, bboxes2):
# 更新 symbols
if 'symbols' in bbox1:
bbox2['symbols'] = bbox1['symbols'] # 更新 symbols
# 更新 atoms 的 atom_symbol
if 'symbols' in bbox1 and 'atoms' in bbox2:
symbols = bbox1['symbols']
atoms = bbox2.get('atoms', [])
# 确保 symbols 和 atoms 的长度一致
if len(symbols) != len(atoms):
print(f"Warning: Mismatched symbols and atoms in bbox {bbox1.get('bbox')}!")
continue
for atom, symbol in zip(atoms, symbols):
atom['atom_symbol'] = symbol # 更新 atom_symbol
return input2
input2_updated = update_symbols_in_atoms(gpt_output, coref_results)
def update_smiles_and_molfile(input_data, conversion_function):
"""
使用更新后的 'symbols'、'coords' 和 'edges' 调用 `conversion_function` 生成新的 'smiles' 和 'molfile',
并替换到原数据结构中。
参数:
- input_data: 包含 bboxes 的嵌套数据结构
- conversion_function: 函数,接受 'coords', 'symbols', 'edges' 并返回 (new_smiles, new_molfile, _)
返回:
- 更新后的数据结构
"""
for item in input_data:
for bbox in item.get('bboxes', []):
# 检查必需的键是否存在
if all(key in bbox for key in ['coords', 'symbols', 'edges']):
coords = bbox['coords']
symbols = bbox['symbols']
edges = bbox['edges']
# 调用转换函数生成新的 'smiles' 和 'molfile'
new_smiles, new_molfile, _ = conversion_function(coords, symbols, edges)
print(f" Generated 'smiles': {new_smiles}")
# 替换旧的 'smiles' 和 'molfile'
bbox['smiles'] = new_smiles
bbox['molfile'] = new_molfile
return input_data
updated_data = update_smiles_and_molfile(input2_updated, _convert_graph_to_smiles)
print(f"updated_mol_data:{updated_data}")
return updated_data
|