File size: 19,943 Bytes
1f516b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
import sys
import torch
import json
from chemietoolkit import ChemIEToolkit
import cv2
from PIL import Image
import json
import sys
#sys.path.append('./RxnScribe-main/')
import torch
from rxnscribe import RxnScribe
import json
import sys
import torch
import json
model = ChemIEToolkit(device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')) 
from molscribe.chemistry import _convert_graph_to_smiles
import base64
import torch
import json
from PIL import Image
import numpy as np
from chemietoolkit import ChemIEToolkit, utils
from openai import AzureOpenAI
import os




ckpt_path = "./pix2seq_reaction_full.ckpt"
model1 = RxnScribe(ckpt_path, device=torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
device = torch.device(('cuda' if torch.cuda.is_available() else 'cpu'))

model = ChemIEToolkit(device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')) 

def get_multi_molecular(image_path: str) -> list:
    '''Returns a list of reactions extracted from the image.'''
    # 打开图像文件
    image = Image.open(image_path).convert('RGB')
    
    # 将图像作为输入传递给模型
    coref_results = model.extract_molecule_corefs_from_figures([image])
    for item in coref_results:
        for bbox in item.get("bboxes", []):
            for key in ["category", "molfile", "symbols", 'atoms', "bonds", 'category_id', 'score', 'corefs']: #'atoms'
                bbox.pop(key, None)  # 安全地移除键
    print(json.dumps(coref_results))
    # 返回反应列表,使用 json.dumps 进行格式化
    
    return json.dumps(coref_results)

def get_multi_molecular_text_to_correct(image_path: str) -> list:
    '''Returns a list of reactions extracted from the image.'''
    # 打开图像文件
    image = Image.open(image_path).convert('RGB')
    
    # 将图像作为输入传递给模型
    coref_results = model.extract_molecule_corefs_from_figures([image])
    for item in coref_results:
        for bbox in item.get("bboxes", []):
            for key in ["category", "bbox", "molfile", "symbols", 'atoms', "bonds", 'category_id', 'score', 'corefs']: #'atoms'
                bbox.pop(key, None)  # 安全地移除键
    print(json.dumps(coref_results))
    # 返回反应列表,使用 json.dumps 进行格式化
    
    return json.dumps(coref_results)

def get_multi_molecular_text_to_correct_withatoms(image_path: str) -> list:
    '''Returns a list of reactions extracted from the image.'''
    # 打开图像文件
    image = Image.open(image_path).convert('RGB')
    
    # 将图像作为输入传递给模型
    coref_results = model.extract_molecule_corefs_from_figures([image])
    for item in coref_results:
        for bbox in item.get("bboxes", []):
            for key in ["coords","edges","molfile", 'atoms', "bonds", 'category_id', 'score', 'corefs']: #'atoms'
                bbox.pop(key, None)  # 安全地移除键
    print(json.dumps(coref_results))
    # 返回反应列表,使用 json.dumps 进行格式化
    return json.dumps(coref_results)






def process_reaction_image_with_multiple_products_and_text(image_path: str) -> dict:
    """


    Args:
        image_path (str): 图像文件路径。

    Returns:
        dict: 整理后的反应数据,包括反应物、产物和反应模板。
    """
    # 配置 API Key 和 Azure Endpoint
    api_key = os.getenv("CHEMEAGLE_API_KEY")
    if not api_key:
        raise RuntimeError("Missing CHEMEAGLE_API_KEY environment variable")
 # 替换为实际的 API Key
    azure_endpoint = "https://hkust.azure-api.net"  # 替换为实际的 Azure Endpoint
    
  
    model = ChemIEToolkit(device=torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
    client = AzureOpenAI(
        api_key=api_key,
        api_version='2024-06-01',
        azure_endpoint=azure_endpoint
    )

    # 加载图像并编码为 Base64
    def encode_image(image_path: str):
        with open(image_path, "rb") as image_file:
            return base64.b64encode(image_file.read()).decode('utf-8')

    base64_image = encode_image(image_path)

    # GPT 工具调用配置
    tools = [
       {
        'type': 'function',
        'function': {
            'name': 'get_multi_molecular_text_to_correct_withatoms',
            'description': 'Extracts the SMILES string, the symbols set, and the text coref of all molecular images in a table-reaction image and ready to be correct.',
            'parameters': {
                'type': 'object',
                'properties': {
                    'image_path': {
                        'type': 'string',
                        'description': 'The path to the reaction image.',
                    },
                },
                'required': ['image_path'],
                'additionalProperties': False,
            },
        },
            },
      
    ]

    # 提供给 GPT 的消息内容
    with open('./prompt_getmolecular.txt', 'r') as prompt_file:
        prompt = prompt_file.read()
    messages = [
        {'role': 'system', 'content': 'You are a helpful assistant.'},
        {
            'role': 'user',
            'content': [
                {'type': 'text', 'text': prompt},
                {'type': 'image_url', 'image_url': {'url': f'data:image/png;base64,{base64_image}'}}
            ]
        }
    ]

    # 调用 GPT 接口
    response = client.chat.completions.create(
    model = 'gpt-4o',
    temperature = 0,
    response_format={ 'type': 'json_object' },
    messages = [
        {'role': 'system', 'content': 'You are a helpful assistant.'},
        {
            'role': 'user',
            'content': [
                {
                    'type': 'text',
                    'text': prompt
                },
                {
                    'type': 'image_url',
                    'image_url': {
                        'url': f'data:image/png;base64,{base64_image}'
                    }
                }
            ]},
    ],
    tools = tools)
    
# Step 1: 工具映射表
    TOOL_MAP = {
        'get_multi_molecular_text_to_correct_withatoms': get_multi_molecular_text_to_correct_withatoms,
    }

    # Step 2: 处理多个工具调用
    tool_calls = response.choices[0].message.tool_calls
    results = []

    # 遍历每个工具调用
    for tool_call in tool_calls:
        tool_name = tool_call.function.name
        tool_arguments = tool_call.function.arguments
        tool_call_id = tool_call.id
        
        tool_args = json.loads(tool_arguments)
        
        if tool_name in TOOL_MAP:
            # 调用工具并获取结果
            tool_result = TOOL_MAP[tool_name](image_path)
        else:
            raise ValueError(f"Unknown tool called: {tool_name}")
        
        # 保存每个工具调用结果
        results.append({
            'role': 'tool',
            'content': json.dumps({
                'image_path': image_path,
                f'{tool_name}':(tool_result),
            }),
            'tool_call_id': tool_call_id,
        })


# Prepare the chat completion payload
    completion_payload = {
        'model': 'gpt-4o',
        'messages': [
            {'role': 'system', 'content': 'You are a helpful assistant.'},
            {
                'role': 'user',
                'content': [
                    {
                        'type': 'text',
                        'text': prompt
                    },
                    {
                        'type': 'image_url',
                        'image_url': {
                            'url': f'data:image/png;base64,{base64_image}'
                        }
                    }
                ]
            },
            response.choices[0].message,
            *results
            ],
    }

# Generate new response
    response = client.chat.completions.create(
        model=completion_payload["model"],
        messages=completion_payload["messages"],
        response_format={ 'type': 'json_object' },
        temperature=0
    )


    
    # 获取 GPT 生成的结果
    gpt_output = [json.loads(response.choices[0].message.content)]


    def get_multi_molecular(image_path: str) -> list:
        '''Returns a list of reactions extracted from the image.'''
        # 打开图像文件
        image = Image.open(image_path).convert('RGB')
        
        # 将图像作为输入传递给模型
        coref_results = model.extract_molecule_corefs_from_figures([image])
        return coref_results

    
    coref_results = get_multi_molecular(image_path)


    def update_symbols_in_atoms(input1, input2):
        """
        用 input1 中更新后的 'symbols' 替换 input2 中对应 bboxes 的 'symbols',并同步更新 'atoms' 的 'atom_symbol'。
        假设 input1 和 input2 的结构一致。
        """
        for item1, item2 in zip(input1, input2):
            bboxes1 = item1.get('bboxes', [])
            bboxes2 = item2.get('bboxes', [])
            
            if len(bboxes1) != len(bboxes2):
                print("Warning: Mismatched number of bboxes!")
                continue

            for bbox1, bbox2 in zip(bboxes1, bboxes2):
                # 更新 symbols
                if 'symbols' in bbox1:
                    bbox2['symbols'] = bbox1['symbols']  # 更新 symbols
                
                # 更新 atoms 的 atom_symbol
                if 'symbols' in bbox1 and 'atoms' in bbox2:
                    symbols = bbox1['symbols']
                    atoms = bbox2.get('atoms', [])
                    
                    # 确保 symbols 和 atoms 的长度一致
                    if len(symbols) != len(atoms):
                        print(f"Warning: Mismatched symbols and atoms in bbox {bbox1.get('bbox')}!")
                        continue

                    for atom, symbol in zip(atoms, symbols):
                        atom['atom_symbol'] = symbol  # 更新 atom_symbol

        return input2


    input2_updated = update_symbols_in_atoms(gpt_output, coref_results)





    def update_smiles_and_molfile(input_data, conversion_function):
        """
        使用更新后的 'symbols'、'coords' 和 'edges' 调用 `conversion_function` 生成新的 'smiles' 和 'molfile',
        并替换到原数据结构中。
        
        参数:
        - input_data: 包含 bboxes 的嵌套数据结构
        - conversion_function: 函数,接受 'coords', 'symbols', 'edges' 并返回 (new_smiles, new_molfile, _)
        
        返回:
        - 更新后的数据结构
        """
        for item in input_data:
            for bbox in item.get('bboxes', []):
                # 检查必需的键是否存在
                if all(key in bbox for key in ['coords', 'symbols', 'edges']):
                    coords = bbox['coords']
                    symbols = bbox['symbols']
                    edges = bbox['edges']
                    
                    # 调用转换函数生成新的 'smiles' 和 'molfile'
                    new_smiles, new_molfile, _ = conversion_function(coords, symbols, edges)
                    print(f"    Generated 'smiles': {new_smiles}")
            
                    # 替换旧的 'smiles' 和 'molfile'
                    bbox['smiles'] = new_smiles
                    bbox['molfile'] = new_molfile

        return input_data

    updated_data = update_smiles_and_molfile(input2_updated, _convert_graph_to_smiles)

    return updated_data

    
    






def process_reaction_image_with_multiple_products_and_text_correctR(image_path: str) -> dict:
    """


    Args:
        image_path (str): 图像文件路径。

    Returns:
        dict: 整理后的反应数据,包括反应物、产物和反应模板。
    """
    # 配置 API Key 和 Azure Endpoint
    api_key = os.getenv("CHEMEAGLE_API_KEY")
    if not api_key:
        raise RuntimeError("Missing CHEMEAGLE_API_KEY environment variable")
  # 替换为实际的 API Key
    azure_endpoint = "https://hkust.azure-api.net"  # 替换为实际的 Azure Endpoint
    model = ChemIEToolkit(device=torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
    client = AzureOpenAI(
        api_key=api_key,
        api_version='2024-06-01',
        azure_endpoint=azure_endpoint
    )

    # 加载图像并编码为 Base64
    def encode_image(image_path: str):
        with open(image_path, "rb") as image_file:
            return base64.b64encode(image_file.read()).decode('utf-8')

    base64_image = encode_image(image_path)

    # GPT 工具调用配置
    tools = [
       {
        'type': 'function',
        'function': {
            'name': 'get_multi_molecular_text_to_correct_withatoms',
            'description': 'Extracts the SMILES string, the symbols set, and the text coref of all molecular images in a table-reaction image and ready to be correct.',
            'parameters': {
                'type': 'object',
                'properties': {
                    'image_path': {
                        'type': 'string',
                        'description': 'The path to the reaction image.',
                    },
                },
                'required': ['image_path'],
                'additionalProperties': False,
            },
        },
            },
      
    ]

    # 提供给 GPT 的消息内容
    with open('./prompt_getmolecular_correctR.txt', 'r') as prompt_file:
        prompt = prompt_file.read()
    messages = [
        {'role': 'system', 'content': 'You are a helpful assistant.'},
        {
            'role': 'user',
            'content': [
                {'type': 'text', 'text': prompt},
                {'type': 'image_url', 'image_url': {'url': f'data:image/png;base64,{base64_image}'}}
            ]
        }
    ]

    # 调用 GPT 接口
    response = client.chat.completions.create(
    model = 'gpt-4o',
    temperature = 0,
    response_format={ 'type': 'json_object' },
    messages = [
        {'role': 'system', 'content': 'You are a helpful assistant.'},
        {
            'role': 'user',
            'content': [
                {
                    'type': 'text',
                    'text': prompt
                },
                {
                    'type': 'image_url',
                    'image_url': {
                        'url': f'data:image/png;base64,{base64_image}'
                    }
                }
            ]},
    ],
    tools = tools)
    
# Step 1: 工具映射表
    TOOL_MAP = {
        'get_multi_molecular_text_to_correct_withatoms': get_multi_molecular_text_to_correct_withatoms,
    }

    # Step 2: 处理多个工具调用
    tool_calls = response.choices[0].message.tool_calls
    results = []

    # 遍历每个工具调用
    for tool_call in tool_calls:
        tool_name = tool_call.function.name
        tool_arguments = tool_call.function.arguments
        tool_call_id = tool_call.id
        
        tool_args = json.loads(tool_arguments)
        
        if tool_name in TOOL_MAP:
            # 调用工具并获取结果
            tool_result = TOOL_MAP[tool_name](image_path)
        else:
            raise ValueError(f"Unknown tool called: {tool_name}")
        
        # 保存每个工具调用结果
        results.append({
            'role': 'tool',
            'content': json.dumps({
                'image_path': image_path,
                f'{tool_name}':(tool_result),
            }),
            'tool_call_id': tool_call_id,
        })


# Prepare the chat completion payload
    completion_payload = {
        'model': 'gpt-4o',
        'messages': [
            {'role': 'system', 'content': 'You are a helpful assistant.'},
            {
                'role': 'user',
                'content': [
                    {
                        'type': 'text',
                        'text': prompt
                    },
                    {
                        'type': 'image_url',
                        'image_url': {
                            'url': f'data:image/png;base64,{base64_image}'
                        }
                    }
                ]
            },
            response.choices[0].message,
            *results
            ],
    }

# Generate new response
    response = client.chat.completions.create(
        model=completion_payload["model"],
        messages=completion_payload["messages"],
        response_format={ 'type': 'json_object' },
        temperature=0
    )


    
    # 获取 GPT 生成的结果
    gpt_output = [json.loads(response.choices[0].message.content)]


    def get_multi_molecular(image_path: str) -> list:
        '''Returns a list of reactions extracted from the image.'''
        # 打开图像文件
        image = Image.open(image_path).convert('RGB')
        
        # 将图像作为输入传递给模型
        coref_results = model.extract_molecule_corefs_from_figures([image])
        return coref_results

    
    coref_results = get_multi_molecular(image_path)


    def update_symbols_in_atoms(input1, input2):
        """
        用 input1 中更新后的 'symbols' 替换 input2 中对应 bboxes 的 'symbols',并同步更新 'atoms' 的 'atom_symbol'。
        假设 input1 和 input2 的结构一致。
        """
        for item1, item2 in zip(input1, input2):
            bboxes1 = item1.get('bboxes', [])
            bboxes2 = item2.get('bboxes', [])
            
            if len(bboxes1) != len(bboxes2):
                print("Warning: Mismatched number of bboxes!")
                continue

            for bbox1, bbox2 in zip(bboxes1, bboxes2):
                # 更新 symbols
                if 'symbols' in bbox1:
                    bbox2['symbols'] = bbox1['symbols']  # 更新 symbols
                
                # 更新 atoms 的 atom_symbol
                if 'symbols' in bbox1 and 'atoms' in bbox2:
                    symbols = bbox1['symbols']
                    atoms = bbox2.get('atoms', [])
                    
                    # 确保 symbols 和 atoms 的长度一致
                    if len(symbols) != len(atoms):
                        print(f"Warning: Mismatched symbols and atoms in bbox {bbox1.get('bbox')}!")
                        continue

                    for atom, symbol in zip(atoms, symbols):
                        atom['atom_symbol'] = symbol  # 更新 atom_symbol

        return input2


    input2_updated = update_symbols_in_atoms(gpt_output, coref_results)





    def update_smiles_and_molfile(input_data, conversion_function):
        """
        使用更新后的 'symbols'、'coords' 和 'edges' 调用 `conversion_function` 生成新的 'smiles' 和 'molfile',
        并替换到原数据结构中。
        
        参数:
        - input_data: 包含 bboxes 的嵌套数据结构
        - conversion_function: 函数,接受 'coords', 'symbols', 'edges' 并返回 (new_smiles, new_molfile, _)
        
        返回:
        - 更新后的数据结构
        """
        for item in input_data:
            for bbox in item.get('bboxes', []):
                # 检查必需的键是否存在
                if all(key in bbox for key in ['coords', 'symbols', 'edges']):
                    coords = bbox['coords']
                    symbols = bbox['symbols']
                    edges = bbox['edges']
                    
                    # 调用转换函数生成新的 'smiles' 和 'molfile'
                    new_smiles, new_molfile, _ = conversion_function(coords, symbols, edges)
                    print(f"    Generated 'smiles': {new_smiles}")
            
                    # 替换旧的 'smiles' 和 'molfile'
                    bbox['smiles'] = new_smiles
                    bbox['molfile'] = new_molfile

        return input_data

    updated_data = update_smiles_and_molfile(input2_updated, _convert_graph_to_smiles)
    print(f"updated_mol_data:{updated_data}")

    return updated_data