File size: 46,184 Bytes
1f516b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
import numpy as np
from PIL import Image
import cv2
import layoutparser as lp
from rdkit import Chem
from rdkit.Chem import Draw
from rdkit.Chem import rdDepictor
rdDepictor.SetPreferCoordGen(True)
from rdkit.Chem.Draw import IPythonConsole
from rdkit.Chem import AllChem
import re
import copy

BOND_TO_INT = {
    "": 0,
    "single": 1,
    "double": 2, 
    "triple": 3, 
    "aromatic": 4, 
    "solid wedge": 5, 
    "dashed wedge": 6
}

RGROUP_SYMBOLS = ['R', 'R1', 'R2', 'R3', 'R4', 'R5', 'R6', 'R7', 'R8', 'R9', 'R10', 'R11', 'R12',
                  'Ra', 'Rb', 'Rc', 'Rd', 'Rf', 'X', 'Y', 'Z', 'Q', 'A', 'E', 'Ar', 'Ar1', 'Ar2', 'Ari', "R'", 
                  '1*', '2*','3*', '4*','5*', '6*','7*', '8*','9*', '10*','11*', '12*','[a*]', '[b*]','[c*]', '[d*]']

RGROUP_SYMBOLS = RGROUP_SYMBOLS + [f'[{i}]' for i in RGROUP_SYMBOLS]

RGROUP_SMILES = ['[1*]', '[2*]','[3*]', '[4*]','[5*]', '[6*]','[7*]', '[8*]','[9*]', '[10*]','[11*]', '[12*]','[a*]', '[b*]','[c*]', '[d*]','*', '[Rf]']

def get_figures_from_pages(pages, pdfparser):
    figures = []
    for i in range(len(pages)):
        img = np.asarray(pages[i])
        layout = pdfparser.detect(img)
        blocks = lp.Layout([b for b in layout if b.type == "Figure"])
        for block in blocks:
            figure = Image.fromarray(block.crop_image(img))
            figures.append({
                'image': figure,
                'page': i
            })
    return figures

def clean_bbox_output(figures, bboxes):
    results = []
    cropped = []
    references = []
    for i, output in enumerate(bboxes):
        mol_bboxes = [elt['bbox'] for elt in output if elt['category'] == '[Mol]']
        mol_scores = [elt['score'] for elt in output if elt['category'] == '[Mol]']
        data = {}
        results.append(data)
        data['image'] = figures[i]
        data['molecules'] = []
        for bbox, score in zip(mol_bboxes, mol_scores):
            x1, y1, x2, y2 = bbox
            height, width, _ = figures[i].shape
            cropped_img = figures[i][int(y1*height):int(y2*height),int(x1*width):int(x2*width)]
            cur_mol = {
                'bbox': bbox,
                'score': score,
                'image': cropped_img,
                #'info': None,
            }
            cropped.append(cropped_img)
            data['molecules'].append(cur_mol)
            references.append(cur_mol)
    return results, cropped, references
    
def convert_to_pil(image):
    if type(image) == np.ndarray:
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        image = Image.fromarray(image)
    return image

def convert_to_cv2(image):
    if type(image) != np.ndarray:
        image = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB)
    return image

def replace_rgroups_in_figure(figures, results, coref_results, molscribe, batch_size=16):
    pattern = re.compile('(?P<name>[RXY]\d?)[ ]*=[ ]*(?P<group>\w+)')
    for figure, result, corefs in zip(figures, results, coref_results):
        r_groups = []
        seen_r_groups = set()
        for bbox in corefs['bboxes']:
            if bbox['category'] == '[Idt]':
                for text in bbox['text']:
                    res = pattern.search(text)
                    if res is None:
                        continue
                    name = res.group('name')
                    group = res.group('group')
                    if (name, group) in seen_r_groups:
                        continue
                    seen_r_groups.add((name, group))
                    r_groups.append({name: res.group('group')})
        if r_groups and result['reactions']:
            seen_r_groups = set([pair[0] for pair in seen_r_groups])
            orig_reaction = result['reactions'][0]
            graphs = get_atoms_and_bonds(figure['figure']['image'], orig_reaction, molscribe, batch_size=batch_size)
            relevant_locs = {}
            for i, graph in enumerate(graphs):
                to_add = []
                for j, atom in enumerate(graph['chartok_coords']['symbols']):
                    if atom[1:-1] in seen_r_groups:
                        to_add.append((atom[1:-1], j))
                relevant_locs[i] = to_add

            for r_group in r_groups:
                reaction = get_replaced_reaction(orig_reaction, graphs, relevant_locs, r_group, molscribe)
                to_add ={
                    'reactants': reaction['reactants'][:],
                    'conditions': orig_reaction['conditions'][:],
                    'products': reaction['products'][:]
                }
                result['reactions'].append(to_add)
    return results

def process_tables(figures, results, molscribe, batch_size=16):
    r_group_pattern = re.compile(r'^(\w+-)?(?P<group>[\w-]+)( \(\w+\))?$')
    for figure, result in zip(figures, results):
        result['page'] = figure['page']
        if figure['table']['content'] is not None:
            content = figure['table']['content']
            if len(result['reactions']) > 1:
                print("Warning: multiple reactions detected for table")
            elif len(result['reactions']) == 0:
                continue
            orig_reaction = result['reactions'][0]
            graphs = get_atoms_and_bonds(figure['figure']['image'], orig_reaction, molscribe, batch_size=batch_size)
            relevant_locs = find_relevant_groups(graphs, content['columns'])
            conditions_to_extend = []
            for row in content['rows']:
                r_groups = {}
                expanded_conditions = orig_reaction['conditions'][:]
                replaced = False
                for col, entry in zip(content['columns'], row):
                    if col['tag'] != 'alkyl group':
                        expanded_conditions.append({
                            'category': '[Table]',
                            'text': entry['text'], 
                            'tag': col['tag'],
                            'header': col['text'],
                        })
                    else:
                        found = r_group_pattern.match(entry['text'])
                        if found is not None:
                            r_groups[col['text']] = found.group('group')
                            replaced = True
                reaction = get_replaced_reaction(orig_reaction, graphs, relevant_locs, r_groups, molscribe)  
                if replaced:
                    to_add = {
                        'reactants': reaction['reactants'][:],
                        'conditions': expanded_conditions,
                        'products': reaction['products'][:]
                    }
                    result['reactions'].append(to_add)
                else:
                    conditions_to_extend.append(expanded_conditions)
            orig_reaction['conditions'] = [orig_reaction['conditions']]
            orig_reaction['conditions'].extend(conditions_to_extend)
    return results


def get_atoms_and_bonds(image, reaction, molscribe, batch_size=16):
    image = convert_to_cv2(image)
    cropped_images = []
    results = []
    for key, molecules in reaction.items():
        for i, elt in enumerate(molecules):
            if type(elt) != dict or elt['category'] != '[Mol]':
                continue
            x1, y1, x2, y2 = elt['bbox']
            height, width, _ = image.shape
            cropped_images.append(image[int(y1*height):int(y2*height),int(x1*width):int(x2*width)])
            to_add = {
                'image': cropped_images[-1],
                'chartok_coords': {
                    'coords': [],
                    'symbols': [],
                },
                'edges': [],
                'key': (key, i)
            }
            results.append(to_add)
    outputs = molscribe.predict_images(cropped_images, return_atoms_bonds=True, batch_size=batch_size)
    for mol, result in zip(outputs, results):
        for atom in mol['atoms']:
            result['chartok_coords']['coords'].append((atom['x'], atom['y']))
            result['chartok_coords']['symbols'].append(atom['atom_symbol'])
        result['edges'] = [[0] * len(mol['atoms']) for _ in range(len(mol['atoms']))]
        for bond in mol['bonds']:
            i, j = bond['endpoint_atoms']
            result['edges'][i][j] = BOND_TO_INT[bond['bond_type']]
            result['edges'][j][i] = BOND_TO_INT[bond['bond_type']]
    return results

def find_relevant_groups(graphs, columns):
    results = {}
    r_groups = set([f"[{col['text']}]" for col in columns if col['tag'] == 'alkyl group'])
    for i, graph in enumerate(graphs):
        to_add = []
        for j, atom in enumerate(graph['chartok_coords']['symbols']):
            if atom in r_groups:
                to_add.append((atom[1:-1], j))
        results[i] = to_add
    return results

def get_replaced_reaction(orig_reaction, graphs, relevant_locs, mappings, molscribe):
    graph_copy = []
    for graph in graphs:
        graph_copy.append({
            'image': graph['image'],
            'chartok_coords': {
                'coords': graph['chartok_coords']['coords'][:],
                'symbols': graph['chartok_coords']['symbols'][:],
            },
            'edges': graph['edges'][:],
            'key': graph['key'],
        })
    for graph_idx, atoms in relevant_locs.items():
        for atom, atom_idx in atoms:
            if atom in mappings:
                graph_copy[graph_idx]['chartok_coords']['symbols'][atom_idx] = mappings[atom]
    reaction_copy = {}
    def append_copy(copy_list, entity):    
        if entity['category'] == '[Mol]':
            copy_list.append({
                k1: v1 for k1, v1 in entity.items()
            })
        else:
            copy_list.append(entity)

    for k, v in orig_reaction.items():
        reaction_copy[k] = []
        for entity in v:
            if type(entity) == list:
                sub_list = []
                for e in entity:
                    append_copy(sub_list, e)
                reaction_copy[k].append(sub_list)
            else:
                append_copy(reaction_copy[k], entity)

    for graph in graph_copy:
        output = molscribe.convert_graph_to_output([graph], [graph['image']])
        molecule = reaction_copy[graph['key'][0]][graph['key'][1]]
        molecule['smiles'] = output[0]['smiles']
        molecule['molfile'] = output[0]['molfile']
    return reaction_copy

def get_sites(tar, ref, ref_site = False):
    rdDepictor.Compute2DCoords(ref)
    rdDepictor.Compute2DCoords(tar)
    idx_pair = rdDepictor.GenerateDepictionMatching2DStructure(tar, ref)

    in_template = [i[1] for i in idx_pair]
    sites = []
    for i in range(tar.GetNumAtoms()):
        if i not in in_template:
            for j in tar.GetAtomWithIdx(i).GetNeighbors():
                if j.GetIdx() in in_template and j.GetIdx() not in sites:

                    if ref_site: sites.append(idx_pair[in_template.index(j.GetIdx())][0])
                    else: sites.append(idx_pair[in_template.index(j.GetIdx())][0])
    return sites

def get_atom_mapping(prod_mol, prod_smiles, r_sites_reversed = None):
    # returns prod_mol_to_query which is the mapping of atom indices in prod_mol to the atom indices of the molecule represented by prod_smiles
    prod_template_intermediate = Chem.MolToSmiles(prod_mol)
    prod_template = prod_smiles

    for r in RGROUP_SMILES:
        if r!='*' and r!='(*)':
            prod_template = prod_template.replace(r, '*')
            prod_template_intermediate = prod_template_intermediate.replace(r, '*')

    prod_template_intermediate_mol = Chem.MolFromSmiles(prod_template_intermediate)
    prod_template_mol = Chem.MolFromSmiles(prod_template)
    
    p = Chem.AdjustQueryParameters.NoAdjustments()
    p.makeDummiesQueries = True
    
    prod_template_mol_query = Chem.AdjustQueryProperties(prod_template_mol, p)
    prod_template_intermediate_mol_query = Chem.AdjustQueryProperties(prod_template_intermediate_mol, p)
    rdDepictor.Compute2DCoords(prod_mol)
    rdDepictor.Compute2DCoords(prod_template_mol_query)
    rdDepictor.Compute2DCoords(prod_template_intermediate_mol_query)
    idx_pair = rdDepictor.GenerateDepictionMatching2DStructure(prod_mol, prod_template_intermediate_mol_query)
    
    intermdiate_to_prod_mol = {a:b for a,b in idx_pair}
    prod_mol_to_intermediate = {b:a for a,b in idx_pair}
    
    
    #idx_pair_2 = rdDepictor.GenerateDepictionMatching2DStructure(prod_template_mol_query, prod_template_intermediate_mol_query)
    
    #intermediate_to_query = {a:b for a,b in idx_pair_2}
    #query_to_intermediate = {b:a for a,b in idx_pair_2}
    
    #prod_mol_to_query = {a:intermediate_to_query[prod_mol_to_intermediate[a]] for a in prod_mol_to_intermediate}

 
    substructs = prod_template_mol_query.GetSubstructMatches(prod_template_intermediate_mol_query, uniquify = False)

    #idx_pair_2 = rdDepictor.GenerateDepictionMatching2DStructure(prod_template_mol_query, prod_template_intermediate_mol_query)
    for substruct in substructs:
        
        
        intermediate_to_query = {a:b for a, b in enumerate(substruct)}
        query_to_intermediate = {intermediate_to_query[i]: i for i in intermediate_to_query}

        prod_mol_to_query = {a:intermediate_to_query[prod_mol_to_intermediate[a]] for a in prod_mol_to_intermediate}
        
        good_map = True
        for i in r_sites_reversed:
            if prod_template_mol_query.GetAtomWithIdx(prod_mol_to_query[i]).GetSymbol() not in RGROUP_SMILES:
                good_map = False
        if good_map:
            break

    return prod_mol_to_query, prod_template_mol_query

def clean_corefs(coref_results_dict, idx):
    label_pattern = rf'{re.escape(idx)}[a-zA-Z]+'
    #unclean_pattern = re.escape(idx) + r'\d(?![\d% ])'
    toreturn = {}
    for prod in coref_results_dict:
        has_good_label = False
        for parsed in coref_results_dict[prod]:
            if re.search(label_pattern, parsed):
                has_good_label = True
        if not has_good_label:
            for parsed in coref_results_dict[prod]:
                if idx+'1' in parsed:
                    coref_results_dict[prod].append(idx+'l')
                elif idx+'0' in parsed:
                    coref_results_dict[prod].append(idx+'o')
                elif idx+'5' in parsed:
                    coref_results_dict[prod].append(idx+'s')
                elif idx+'9' in parsed:
                    coref_results_dict[prod].append(idx+'g')



def expand_r_group_label_helper(res, coref_smiles_to_graphs, other_prod, molscribe):
    name = res.group('name')
    group = res.group('group')
    #print(other_prod)
    atoms = coref_smiles_to_graphs[other_prod]['atoms']
    bonds = coref_smiles_to_graphs[other_prod]['bonds']

    #print(atoms, bonds)

    graph = {
        'image': None,
        'chartok_coords': {
            'coords': [],
            'symbols': [],
        },
        'edges': [],
        'key': None
    }
    for atom in atoms:
        graph['chartok_coords']['coords'].append((atom['x'], atom['y']))
        graph['chartok_coords']['symbols'].append(atom['atom_symbol'])
    graph['edges'] = [[0] * len(atoms) for _ in range(len(atoms))]
    for bond in bonds:
        i, j = bond['endpoint_atoms']
        graph['edges'][i][j] = BOND_TO_INT[bond['bond_type']]
        graph['edges'][j][i] = BOND_TO_INT[bond['bond_type']]
    for i, symbol in enumerate(graph['chartok_coords']['symbols']):
        if symbol[1:-1] == name:
            graph['chartok_coords']['symbols'][i] = group

    #print(graph)
    o = molscribe.convert_graph_to_output([graph], [graph['image']])
    return Chem.MolFromSmiles(o[0]['smiles'])

def get_r_group_frags_and_substitute(other_prod_mol, query, reactant_mols, reactant_information, parsed, toreturn):
    prod_template_mol_query, r_sites_reversed_new, h_sites, num_r_groups = query
    # we get the substruct matches. note that we set uniquify to false since the order matters for our method
    substructs = other_prod_mol.GetSubstructMatches(prod_template_mol_query, uniquify = False)

    
    #for r in r_sites_reversed:
    #    print(prod_template_mol_query.GetAtomWithIdx(prod_mol_to_query[r]).GetSymbol())

    # for each substruct we create the mapping of the substruct onto the other_mol
    # delete all the molecules in other_mol correspond to the substruct
    # and check if they number of mol frags is equal to number of r groups
    # we do this to make sure we have the correct substruct
    if len(substructs) >= 1:
        for substruct in substructs:

            query_to_other = {a:b for a,b in enumerate(substruct)}
            other_to_query = {query_to_other[i]:i for i in query_to_other}

            editable = Chem.EditableMol(other_prod_mol)
            r_site_correspondence = []
            for r in r_sites_reversed_new:
                #get its id in substruct
                substruct_id = query_to_other[r]
                r_site_correspondence.append([substruct_id, r_sites_reversed_new[r]])

            for idx in tuple(sorted(substruct, reverse = True)):
                if idx not in [query_to_other[i] for i in r_sites_reversed_new]:
                    editable.RemoveAtom(idx)
                    for r_site in r_site_correspondence:
                        if idx < r_site[0]:
                            r_site[0]-=1
            other_prod_removed = editable.GetMol()

            if len(Chem.GetMolFrags(other_prod_removed, asMols = False)) == num_r_groups:
                break

        # need to compute the sites at which correspond to each r_site_reversed

        r_site_correspondence.sort(key = lambda x: x[0])


        f = []
        ff = []
        frags = Chem.GetMolFrags(other_prod_removed, asMols = True, frags = f, fragsMolAtomMapping = ff)

        # r_group_information maps r group name --> the fragment/molcule corresponding to the r group and the atom index it should be connected at
        r_group_information = {}
        #tosubtract = 0
        for idx, r_site in enumerate(r_site_correspondence):

            r_group_information[r_site[1]]= (frags[f[r_site[0]]], ff[f[r_site[0]]].index(r_site[0]))
            #tosubtract += len(ff[idx])
        for r_site in h_sites:
            r_group_information[r_site] = (Chem.MolFromSmiles('[H]'), 0)

        # now we modify all of the reactants according to the R groups we have found
        # for every reactant we disconnect its r group symbol, and connect it to the r group
        modify_reactants = copy.deepcopy(reactant_mols)
        modified_reactant_smiles = []
        for reactant_idx in reactant_information:
            if len(reactant_information[reactant_idx]) == 0:
                modified_reactant_smiles.append(Chem.MolToSmiles(modify_reactants[reactant_idx]))
            else:
                combined = reactant_mols[reactant_idx]
                if combined.GetNumAtoms() == 1:
                    r_group, _, _ = reactant_information[reactant_idx][0]
                    modified_reactant_smiles.append(Chem.MolToSmiles(r_group_information[r_group][0]))
                else:
                    for r_group, r_index, connect_index in reactant_information[reactant_idx]:
                        combined = Chem.CombineMols(combined, r_group_information[r_group][0])

                    editable = Chem.EditableMol(combined)
                    atomIdxAdder = reactant_mols[reactant_idx].GetNumAtoms()
                    for r_group, r_index, connect_index in reactant_information[reactant_idx]:
                        Chem.EditableMol.RemoveBond(editable, r_index, connect_index)
                        Chem.EditableMol.AddBond(editable, connect_index, atomIdxAdder + r_group_information[r_group][1], Chem.BondType.SINGLE)
                        atomIdxAdder += r_group_information[r_group][0].GetNumAtoms()
                    r_indices = [i[1] for i in reactant_information[reactant_idx]]

                    r_indices.sort(reverse = True)

                    for r_index in r_indices:
                        Chem.EditableMol.RemoveAtom(editable, r_index)

                    modified_reactant_smiles.append(Chem.MolToSmiles(Chem.MolFromSmiles(Chem.MolToSmiles(editable.GetMol()))))

        toreturn.append((modified_reactant_smiles, [Chem.MolToSmiles(other_prod_mol)], parsed))
        return True 
    else:
        return False

def query_enumeration(prod_template_mol_query, r_sites_reversed_new, num_r_groups):
    subsets = generate_subsets(num_r_groups)
    
    toreturn = []
    
    for subset in subsets:
        r_sites_list = [[i, r_sites_reversed_new[i]] for i in r_sites_reversed_new]
        r_sites_list.sort(key = lambda x: x[0])
        to_edit = Chem.EditableMol(prod_template_mol_query)
        
        for entry in subset:
            pos = r_sites_list[entry][0]
            Chem.EditableMol.RemoveBond(to_edit, r_sites_list[entry][0], prod_template_mol_query.GetAtomWithIdx(r_sites_list[entry][0]).GetNeighbors()[0].GetIdx())
        for entry in subset:
            pos = r_sites_list[entry][0]
            Chem.EditableMol.RemoveAtom(to_edit, pos)
        
        edited = to_edit.GetMol()
        for entry in subset: 
            for i in range(entry + 1, num_r_groups):
                r_sites_list[i][0]-=1

        new_r_sites = {}
        new_h_sites = set()
        for i in range(num_r_groups):
            if i not in subset:
                new_r_sites[r_sites_list[i][0]] = r_sites_list[i][1]
            else:
                new_h_sites.add(r_sites_list[i][1])
        toreturn.append((edited, new_r_sites, new_h_sites, num_r_groups - len(subset)))
    return toreturn
 
def generate_subsets(n):
    def backtrack(start, subset):
        result.append(subset[:])
        for i in range(start, -1, -1):  # Iterate in reverse order
            subset.append(i)
            backtrack(i - 1, subset)
            subset.pop()

    result = []
    backtrack(n - 1, [])
    return sorted(result, key=lambda x: (-len(x), x), reverse=True)

def backout(results, coref_results, molscribe):

    toreturn = []

    if not results or not results[0]['reactions'] or not coref_results:
        return toreturn

    try:
        reactants = results[0]['reactions'][0]['reactants']
        products = [i['smiles'] for i in results[0]['reactions'][0]['products']]
        coref_results_dict = {coref_results[0]['bboxes'][coref[0]]['smiles']: coref_results[0]['bboxes'][coref[1]]['text']  for coref in coref_results[0]['corefs']}
        coref_smiles_to_graphs = {coref_results[0]['bboxes'][coref[0]]['smiles']: coref_results[0]['bboxes'][coref[0]]  for coref in coref_results[0]['corefs']}
        
        
        if len(products) == 1:
            if products[0] not in coref_results_dict:
                print("Warning: No Label Parsed")
                return
            product_labels = coref_results_dict[products[0]]
            prod = products[0]
            label_idx = product_labels[0]
            '''
            if len(product_labels) == 1:
                # get the coreference label of the product molecule
                label_idx = product_labels[0]
            else:
                print("Warning: Malformed Label Parsed.")
                return
            '''
        else:
            print("Warning: More than one product detected")
            return
        
        # format the regular expression for labels that correspond to the product label
        numbers = re.findall(r'\d+', label_idx)
        label_idx = numbers[0] if len(numbers) > 0 else ""
        label_pattern = rf'{re.escape(label_idx)}[a-zA-Z]+'
        

        prod_smiles = prod
        prod_mol = Chem.MolFromMolBlock(results[0]['reactions'][0]['products'][0]['molfile'])
        
        # identify the atom indices of the R groups in the product tempalte
        h_counter = 0
        r_sites = {}
        for idx, atom in enumerate(results[0]['reactions'][0]['products'][0]['atoms']):
            sym = atom['atom_symbol']
            if sym == '[H]':
                h_counter += 1
            if sym[0] == '[':
                sym = sym[1:-1]
                if sym[0] == 'R' and sym[1:].isdigit():
                    sym = sym[1:]+"*"
                sym = f'[{sym}]'
            if sym in RGROUP_SYMBOLS:
                if sym not in r_sites:
                    r_sites[sym] = [idx-h_counter]
                else:
                    r_sites[sym].append(idx-h_counter)
        
        r_sites_reversed = {}
        for sym in r_sites:
            for pos in r_sites[sym]:
                r_sites_reversed[pos] = sym
        
        num_r_groups = len(r_sites_reversed)

        #prepare the product template and get the associated mapping

        prod_mol_to_query, prod_template_mol_query = get_atom_mapping(prod_mol, prod_smiles, r_sites_reversed = r_sites_reversed)
        
        reactant_mols = []
        
        
        #--------------process the reactants-----------------
        
        reactant_information = {} #index of relevant reaction --> [[R group name, atom index of R group, atom index of R group connection], ...]
        
        for idx, reactant in enumerate(reactants):
            reactant_information[idx] = []
            reactant_mols.append(Chem.MolFromSmiles(reactant['smiles']))
            has_r = False

            r_sites_reactant = {}
            
            h_counter = 0

            for a_idx, atom in enumerate(reactant['atoms']):
                
                #go through all atoms and check if they are an R group, if so add it to reactant information
                sym = atom['atom_symbol']
                if sym == '[H]':
                    h_counter += 1
                if sym[0] == '[':
                    sym = sym[1:-1]
                    if sym[0] == 'R' and sym[1:].isdigit():
                        sym = sym[1:]+"*"
                    sym = f'[{sym}]'
                if sym in r_sites:
                    if reactant_mols[-1].GetNumAtoms()==1:
                        reactant_information[idx].append([sym, -1, -1])
                    else: 
                        has_r = True
                        reactant_mols[-1] = Chem.MolFromMolBlock(reactant['molfile'])
                        reactant_information[idx].append([sym, a_idx-h_counter, [i.GetIdx() for i in reactant_mols[-1].GetAtomWithIdx(a_idx-h_counter).GetNeighbors()][0]])
                        r_sites_reactant[sym] = a_idx-h_counter
                elif sym == '[1*]' and '[7*]' in r_sites:
                    if reactant_mols[-1].GetNumAtoms()==1:
                        reactant_information[idx].append(['[7*]', -1, -1])
                    else: 
                        has_r = True
                        reactant_mols[-1] = Chem.MolFromMolBlock(reactant['molfile'])
                        reactant_information[idx].append(['[7*]', a_idx-h_counter, [i.GetIdx() for i in reactant_mols[-1].GetAtomWithIdx(a_idx-h_counter).GetNeighbors()][0]])
                        r_sites_reactant['[7*]'] = a_idx-h_counter
                elif sym == '[7*]' and '[1*]' in r_sites:
                    if reactant_mols[-1].GetNumAtoms()==1:
                        reactant_information[idx].append(['[1*]', -1, -1])
                    else: 
                        has_r = True
                        reactant_mols[-1] = Chem.MolFromMolBlock(reactant['molfile'])
                        reactant_information[idx].append(['[1*]', a_idx-h_counter, [i.GetIdx() for i in reactant_mols[-1].GetAtomWithIdx(a_idx-h_counter).GetNeighbors()][0]])
                        r_sites_reactant['[1*]'] = a_idx-h_counter



                elif sym == '[1*]' and '[Rf]' in r_sites:
                    if reactant_mols[-1].GetNumAtoms()==1:
                        reactant_information[idx].append(['[Rf]', -1, -1])
                    else: 
                        has_r = True
                        reactant_mols[-1] = Chem.MolFromMolBlock(reactant['molfile'])
                        reactant_information[idx].append(['[Rf]', a_idx-h_counter, [i.GetIdx() for i in reactant_mols[-1].GetAtomWithIdx(a_idx-h_counter).GetNeighbors()][0]])
                        r_sites_reactant['[Rf]'] = a_idx-h_counter

                elif sym == '[Rf]' and '[1*]' in r_sites:
                    if reactant_mols[-1].GetNumAtoms()==1:
                        reactant_information[idx].append(['[1*]', -1, -1])
                    else: 
                        has_r = True
                        reactant_mols[-1] = Chem.MolFromMolBlock(reactant['molfile'])
                        reactant_information[idx].append(['[1*]', a_idx-h_counter, [i.GetIdx() for i in reactant_mols[-1].GetAtomWithIdx(a_idx-h_counter).GetNeighbors()][0]])
                        r_sites_reactant['[1*]'] = a_idx-h_counter
                

            r_sites_reversed_reactant = {r_sites_reactant[i]: i for i in r_sites_reactant}
            # if the reactant had r groups, we had to use the molecule generated from the MolBlock. 
            # but the molblock may have unexpanded elemeents that are not R groups
            # so we have to map back the r group indices in the molblock version to the full molecule generated by the smiles
            # and adjust the indices of the r groups accordingly
            if has_r:
                #get the mapping
                reactant_mol_to_query, _ = get_atom_mapping(reactant_mols[-1], reactant['smiles'], r_sites_reversed = r_sites_reversed_reactant)

                #make the adjustment
                for info in reactant_information[idx]:
                    info[1] = reactant_mol_to_query[info[1]]
                    info[2] = reactant_mol_to_query[info[2]]
                reactant_mols[-1] = Chem.MolFromSmiles(reactant['smiles'])

        #go through all the molecules in the coreference

        clean_corefs(coref_results_dict, label_idx)

        for other_prod in coref_results_dict:

            #check if they match the product label regex
            found_good_label = False
            for parsed in coref_results_dict[other_prod]:
                if re.search(label_pattern, parsed) and not found_good_label:
                    found_good_label = True
                    other_prod_mol = Chem.MolFromSmiles(other_prod)

                    if other_prod != prod_smiles and other_prod_mol is not None:

                        #check if there are R groups to be resolved in the target product
                        
                        all_other_prod_mols = []
    
                        r_group_sub_pattern = re.compile('(?P<name>[RXY]\d?)[ ]*=[ ]*(?P<group>\w+)')

                        for parsed_labels in coref_results_dict[other_prod]:
                            res = r_group_sub_pattern.search(parsed_labels)

                            if res is not None:
                                all_other_prod_mols.append((expand_r_group_label_helper(res, coref_smiles_to_graphs, other_prod, molscribe), parsed + parsed_labels))
                        
                        if len(all_other_prod_mols) == 0:
                            if other_prod_mol is not None:
                                all_other_prod_mols.append((other_prod_mol, parsed))

                        
                            
                        
                        for other_prod_mol, parsed in all_other_prod_mols:
                        
                            other_prod_frags = Chem.GetMolFrags(other_prod_mol, asMols = True)
                            
                            for other_prod_frag in other_prod_frags:
                                substructs = other_prod_frag.GetSubstructMatches(prod_template_mol_query, uniquify = False)
                                
                                if len(substructs)>0:
                                    other_prod_mol = other_prod_frag
                                    break
                            r_sites_reversed_new = {prod_mol_to_query[r]: r_sites_reversed[r] for r in r_sites_reversed}

                            queries = query_enumeration(prod_template_mol_query, r_sites_reversed_new, num_r_groups)

                            matched = False

                            for query in queries:
                                if not matched:
                                    try:
                                        matched = get_r_group_frags_and_substitute(other_prod_mol, query, reactant_mols, reactant_information, parsed, toreturn)
                                    except:
                                        pass

    except:
        pass                          
                            
         
    return toreturn


def backout_without_coref(results, coref_results, coref_results_dict, coref_smiles_to_graphs, molscribe):

    toreturn = []

    if not results or not results[0]['reactions'] or not coref_results:
        return toreturn

    try:
        reactants = results[0]['reactions'][0]['reactants']
        products = [i['smiles'] for i in results[0]['reactions'][0]['products']]
        coref_results_dict = coref_results_dict
        coref_smiles_to_graphs = coref_smiles_to_graphs
        
        
        if len(products) == 1:
            if products[0] not in coref_results_dict:
                print("Warning: No Label Parsed")
                return
            product_labels = coref_results_dict[products[0]]
            prod = products[0]
            label_idx = product_labels[0]
            '''
            if len(product_labels) == 1:
                # get the coreference label of the product molecule
                label_idx = product_labels[0]
            else:
                print("Warning: Malformed Label Parsed.")
                return
            '''
        else:
            print("Warning: More than one product detected")
            return
        
        # format the regular expression for labels that correspond to the product label
        numbers = re.findall(r'\d+', label_idx)
        label_idx = numbers[0] if len(numbers) > 0 else ""
        label_pattern = rf'{re.escape(label_idx)}[a-zA-Z]+'
        

        prod_smiles = prod
        prod_mol = Chem.MolFromMolBlock(results[0]['reactions'][0]['products'][0]['molfile'])
        
        # identify the atom indices of the R groups in the product tempalte
        h_counter = 0
        r_sites = {}
        for idx, atom in enumerate(results[0]['reactions'][0]['products'][0]['atoms']):
            sym = atom['atom_symbol']
            if sym == '[H]':
                h_counter += 1
            if sym[0] == '[':
                sym = sym[1:-1]
                if sym[0] == 'R' and sym[1:].isdigit():
                    sym = sym[1:]+"*"
                sym = f'[{sym}]'
            if sym in RGROUP_SYMBOLS:
                if sym not in r_sites:
                    r_sites[sym] = [idx-h_counter]
                else:
                    r_sites[sym].append(idx-h_counter)
        
        r_sites_reversed = {}
        for sym in r_sites:
            for pos in r_sites[sym]:
                r_sites_reversed[pos] = sym
        
        num_r_groups = len(r_sites_reversed)

        #prepare the product template and get the associated mapping

        prod_mol_to_query, prod_template_mol_query = get_atom_mapping(prod_mol, prod_smiles, r_sites_reversed = r_sites_reversed)
        
        reactant_mols = []
        
        
        #--------------process the reactants-----------------
        
        reactant_information = {} #index of relevant reaction --> [[R group name, atom index of R group, atom index of R group connection], ...]
        
        for idx, reactant in enumerate(reactants):
            reactant_information[idx] = []
            reactant_mols.append(Chem.MolFromSmiles(reactant['smiles']))
            has_r = False

            r_sites_reactant = {}
            
            h_counter = 0

            for a_idx, atom in enumerate(reactant['atoms']):
                
                #go through all atoms and check if they are an R group, if so add it to reactant information
                sym = atom['atom_symbol']
                if sym == '[H]':
                    h_counter += 1
                if sym[0] == '[':
                    sym = sym[1:-1]
                    if sym[0] == 'R' and sym[1:].isdigit():
                        sym = sym[1:]+"*"
                    sym = f'[{sym}]'
                if sym in r_sites:
                    if reactant_mols[-1].GetNumAtoms()==1:
                        reactant_information[idx].append([sym, -1, -1])
                    else: 
                        has_r = True
                        reactant_mols[-1] = Chem.MolFromMolBlock(reactant['molfile'])
                        reactant_information[idx].append([sym, a_idx-h_counter, [i.GetIdx() for i in reactant_mols[-1].GetAtomWithIdx(a_idx-h_counter).GetNeighbors()][0]])
                        r_sites_reactant[sym] = a_idx-h_counter
                elif sym == '[1*]' and '[7*]' in r_sites:
                    if reactant_mols[-1].GetNumAtoms()==1:
                        reactant_information[idx].append(['[7*]', -1, -1])
                    else: 
                        has_r = True
                        reactant_mols[-1] = Chem.MolFromMolBlock(reactant['molfile'])
                        reactant_information[idx].append(['[7*]', a_idx-h_counter, [i.GetIdx() for i in reactant_mols[-1].GetAtomWithIdx(a_idx-h_counter).GetNeighbors()][0]])
                        r_sites_reactant['[7*]'] = a_idx-h_counter
                elif sym == '[7*]' and '[1*]' in r_sites:
                    if reactant_mols[-1].GetNumAtoms()==1:
                        reactant_information[idx].append(['[1*]', -1, -1])
                    else: 
                        has_r = True
                        reactant_mols[-1] = Chem.MolFromMolBlock(reactant['molfile'])
                        reactant_information[idx].append(['[1*]', a_idx-h_counter, [i.GetIdx() for i in reactant_mols[-1].GetAtomWithIdx(a_idx-h_counter).GetNeighbors()][0]])
                        r_sites_reactant['[1*]'] = a_idx-h_counter
                
                elif sym == '[1*]' and '[Rf]' in r_sites:
                    if reactant_mols[-1].GetNumAtoms()==1:
                        reactant_information[idx].append(['[Rf]', -1, -1])
                    else: 
                        has_r = True
                        reactant_mols[-1] = Chem.MolFromMolBlock(reactant['molfile'])
                        reactant_information[idx].append(['[Rf]', a_idx-h_counter, [i.GetIdx() for i in reactant_mols[-1].GetAtomWithIdx(a_idx-h_counter).GetNeighbors()][0]])
                        r_sites_reactant['[Rf]'] = a_idx-h_counter

                elif sym == '[Rf]' and '[1*]' in r_sites:
                    if reactant_mols[-1].GetNumAtoms()==1:
                        reactant_information[idx].append(['[1*]', -1, -1])
                    else: 
                        has_r = True
                        reactant_mols[-1] = Chem.MolFromMolBlock(reactant['molfile'])
                        reactant_information[idx].append(['[1*]', a_idx-h_counter, [i.GetIdx() for i in reactant_mols[-1].GetAtomWithIdx(a_idx-h_counter).GetNeighbors()][0]])
                        r_sites_reactant['[1*]'] = a_idx-h_counter

            r_sites_reversed_reactant = {r_sites_reactant[i]: i for i in r_sites_reactant}
            # if the reactant had r groups, we had to use the molecule generated from the MolBlock. 
            # but the molblock may have unexpanded elemeents that are not R groups
            # so we have to map back the r group indices in the molblock version to the full molecule generated by the smiles
            # and adjust the indices of the r groups accordingly
            if has_r:
                #get the mapping
                reactant_mol_to_query, _ = get_atom_mapping(reactant_mols[-1], reactant['smiles'], r_sites_reversed = r_sites_reversed_reactant)

                #make the adjustment
                for info in reactant_information[idx]:
                    info[1] = reactant_mol_to_query[info[1]]
                    info[2] = reactant_mol_to_query[info[2]]
                reactant_mols[-1] = Chem.MolFromSmiles(reactant['smiles'])

        #go through all the molecules in the coreference

        clean_corefs(coref_results_dict, label_idx)

        for other_prod in coref_results_dict:

            #check if they match the product label regex
            found_good_label = False
            for parsed in coref_results_dict[other_prod]:
                if re.search(label_pattern, parsed) and not found_good_label:
                    found_good_label = True
                    other_prod_mol = Chem.MolFromSmiles(other_prod)

                    if other_prod != prod_smiles and other_prod_mol is not None:

                        #check if there are R groups to be resolved in the target product
                        
                        all_other_prod_mols = []
    
                        r_group_sub_pattern = re.compile('(?P<name>[RXY]\d?)[ ]*=[ ]*(?P<group>\w+)')

                        for parsed_labels in coref_results_dict[other_prod]:
                            res = r_group_sub_pattern.search(parsed_labels)

                            if res is not None:
                                all_other_prod_mols.append((expand_r_group_label_helper(res, coref_smiles_to_graphs, other_prod, molscribe), parsed + parsed_labels))
                        
                        if len(all_other_prod_mols) == 0:
                            if other_prod_mol is not None:
                                all_other_prod_mols.append((other_prod_mol, parsed))

                        
                            
                        
                        for other_prod_mol, parsed in all_other_prod_mols:
                        
                            other_prod_frags = Chem.GetMolFrags(other_prod_mol, asMols = True)
                            
                            for other_prod_frag in other_prod_frags:
                                substructs = other_prod_frag.GetSubstructMatches(prod_template_mol_query, uniquify = False)
                                
                                if len(substructs)>0:
                                    other_prod_mol = other_prod_frag
                                    break
                            r_sites_reversed_new = {prod_mol_to_query[r]: r_sites_reversed[r] for r in r_sites_reversed}

                            queries = query_enumeration(prod_template_mol_query, r_sites_reversed_new, num_r_groups)

                            matched = False

                            for query in queries:
                                if not matched:
                                    try:
                                        matched = get_r_group_frags_and_substitute(other_prod_mol, query, reactant_mols, reactant_information, parsed, toreturn)
                                    except:
                                        pass

    except:
        pass                          
                            
         
    return toreturn



def associate_corefs(results, results_coref):
    coref_smiles = {}
    idx_pattern = r'\b\d+[a-zA-Z]{0,2}\b'
    for result_coref in results_coref:
        bboxes, corefs = result_coref['bboxes'], result_coref['corefs']
        for coref in corefs:
            mol, idt = coref[0], coref[1]
            if len(bboxes[idt]['text']) > 0:
                for text in bboxes[idt]['text']:
                    matches = re.findall(idx_pattern, text)
                    for match in matches:
                        coref_smiles[match] = bboxes[mol]['smiles']

    for page in results:
        for reactions in page['reactions']:
            for reaction in reactions['reactions']:
                if 'Reactants' in reaction:
                    if isinstance(reaction['Reactants'], tuple):
                        if reaction['Reactants'][0] in coref_smiles:
                            reaction['Reactants'] = (f'{reaction["Reactants"][0]} ({coref_smiles[reaction["Reactants"][0]]})', reaction['Reactants'][1], reaction['Reactants'][2])
                    else:
                        for idx, compound in enumerate(reaction['Reactants']):
                            if compound[0] in coref_smiles:
                                reaction['Reactants'][idx] = (f'{compound[0]} ({coref_smiles[compound[0]]})', compound[1], compound[2])
                if 'Product' in reaction:
                    if isinstance(reaction['Product'], tuple):
                        if reaction['Product'][0] in coref_smiles:
                            reaction['Product'] = (f'{reaction["Product"][0]} ({coref_smiles[reaction["Product"][0]]})', reaction['Product'][1], reaction['Product'][2])
                    else:
                        for idx, compound in enumerate(reaction['Product']):
                            if compound[0] in coref_smiles:
                                reaction['Product'][idx] = (f'{compound[0]} ({coref_smiles[compound[0]]})', compound[1], compound[2])
    return results


def expand_reactions_with_backout(initial_results, results_coref, molscribe): 
    idx_pattern = r'^\d+[a-zA-Z]{0,2}$'
    for reactions, result_coref in zip(initial_results, results_coref):
        if not reactions['reactions']:
            continue
        try:
            backout_results = backout([reactions], [result_coref], molscribe)
        except Exception:
            continue
        conditions = reactions['reactions'][0]['conditions']
        idt_to_smiles = {}
        if not backout_results:
            continue

        for reactants, products, idt in backout_results:
            reactions['reactions'].append({
                'reactants': [{'category': '[Mol]', 'molfile': None, 'smiles': reactant} for reactant in reactants],
                'conditions': conditions[:],
                'products': [{'category': '[Mol]', 'molfile': None, 'smiles': product} for product in products]
             })
    return initial_results