File size: 13,889 Bytes
1f516b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import os
import math
import json
import random
import argparse
import numpy as np

import time

import torch
from torch.profiler import profile, record_function, ProfilerActivity
import torch.distributed as dist
import pytorch_lightning as pl
from pytorch_lightning import LightningModule, LightningDataModule
from pytorch_lightning.callbacks import LearningRateMonitor
from pytorch_lightning.strategies.ddp import DDPStrategy
from transformers import get_scheduler
import transformers 

from dataset import NERDataset, get_collate_fn

from model import build_model

from utils import get_class_to_index

import evaluate

from seqeval.metrics import accuracy_score
from seqeval.metrics import classification_report
from seqeval.metrics import f1_score
from seqeval.scheme import IOB2



def get_args(notebook=False):
    parser = argparse.ArgumentParser()
    parser.add_argument('--do_train', action='store_true')
    parser.add_argument('--do_valid', action='store_true')
    parser.add_argument('--do_test', action='store_true')
    parser.add_argument('--fp16', action='store_true')
    parser.add_argument('--seed', type=int, default=42)
    parser.add_argument('--gpus', type=int, default=1)
    parser.add_argument('--print_freq', type=int, default=200)
    parser.add_argument('--debug', action='store_true')
    parser.add_argument('--no_eval', action='store_true')


    # Data
    parser.add_argument('--data_path', type=str, default=None)
    parser.add_argument('--image_path', type=str, default=None)
    parser.add_argument('--train_file', type=str, default=None)
    parser.add_argument('--valid_file', type=str, default=None)
    parser.add_argument('--test_file', type=str, default=None)
    parser.add_argument('--vocab_file', type=str, default=None)
    parser.add_argument('--format', type=str, default='reaction')
    parser.add_argument('--num_workers', type=int, default=8)
    parser.add_argument('--input_size', type=int, default=224)

    # Training
    parser.add_argument('--epochs', type=int, default=8)
    parser.add_argument('--batch_size', type=int, default=256)
    parser.add_argument('--lr', type=float, default=1e-4)
    parser.add_argument('--weight_decay', type=float, default=0.05)
    parser.add_argument('--max_grad_norm', type=float, default=5.)
    parser.add_argument('--scheduler', type=str, choices=['cosine', 'constant'], default='cosine')
    parser.add_argument('--warmup_ratio', type=float, default=0)
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1)
    parser.add_argument('--load_path', type=str, default=None)
    parser.add_argument('--load_encoder_only', action='store_true')
    parser.add_argument('--train_steps_per_epoch', type=int, default=-1)
    parser.add_argument('--eval_per_epoch', type=int, default=10)
    parser.add_argument('--save_path', type=str, default='output/')
    parser.add_argument('--save_mode', type=str, default='best', choices=['best', 'all', 'last'])
    parser.add_argument('--load_ckpt', type=str, default='best')
    parser.add_argument('--resume', action='store_true')
    parser.add_argument('--num_train_example', type=int, default=None)

    parser.add_argument('--roberta_checkpoint', type=str, default = "roberta-base")

    parser.add_argument('--corpus', type=str, default = "chemu")

    parser.add_argument('--cache_dir')

    parser.add_argument('--eval_truncated', action='store_true')

    parser.add_argument('--max_seq_length', type = int, default=512)

    args = parser.parse_args([]) if notebook else parser.parse_args()





    return args


class ChemIENERecognizer(LightningModule):

    def __init__(self, args):
        super().__init__()

        self.args = args

        self.model = build_model(args)

        self.validation_step_outputs = []

    def training_step(self, batch, batch_idx):
        



        sentences, masks, refs,_ = batch
        '''
        print("sentences " + str(sentences))
        print("sentence shape " + str(sentences.shape))
        print("masks " + str(masks))
        print("masks shape " + str(masks.shape))
        print("refs " + str(refs))
        print("refs shape " + str(refs.shape))
        '''

        

        loss, logits = self.model(input_ids=sentences, attention_mask=masks, labels=refs)
        self.log('train/loss', loss)
        self.log('lr', self.lr_schedulers().get_lr()[0], prog_bar=True, logger=False)
        return loss
    
    def validation_step(self, batch, batch_idx):
        
        sentences, masks, refs, untruncated = batch
        '''
        print("sentences " + str(sentences))
        print("sentence shape " + str(sentences.shape))
        print("masks " + str(masks))
        print("masks shape " + str(masks.shape))
        print("refs " + str(refs))
        print("refs shape " + str(refs.shape))
        '''

        logits = self.model(input_ids = sentences, attention_mask=masks)[0]
        '''
        print("logits " + str(logits))
        print(sentences.shape)
        print(logits.shape)
        print(torch.eq(logits.argmax(dim = 2), refs).sum())
        '''
        self.validation_step_outputs.append((sentences.to("cpu"), logits.argmax(dim = 2).to("cpu"), refs.to('cpu'), untruncated.to("cpu")))


    def on_validation_epoch_end(self):
        if self.trainer.num_devices > 1:
            gathered_outputs = [None for i in range(self.trainer.num_devices)]
            dist.all_gather_object(gathered_outputs, self.validation_step_outputs)
            gathered_outputs = sum(gathered_outputs, [])
        else:
            gathered_outputs = self.validation_step_outputs
        
        sentences = [list(output[0]) for output in gathered_outputs]  

        class_to_index = get_class_to_index(self.args.corpus)



        index_to_class = {class_to_index[key]: key for key in class_to_index}
        predictions = [list(output[1]) for output in gathered_outputs] 
        labels = [list(output[2]) for output in gathered_outputs]

        untruncateds = [list(output[3]) for output in gathered_outputs]

        untruncateds = [[index_to_class[int(label.item())] for label in sentence if int(label.item()) != -100] for batched in untruncateds for sentence in batched]


        output = {"sentences": [[int(word.item()) for (word, label) in zip(sentence_w, sentence_l) if label != -100] for (batched_w, batched_l) in zip(sentences, labels) for (sentence_w, sentence_l) in zip(batched_w, batched_l) ], 
                  "predictions": [[index_to_class[int(pred.item())] for (pred, label) in zip(sentence_p, sentence_l) if label!=-100] for (batched_p, batched_l) in zip(predictions, labels) for (sentence_p, sentence_l) in zip(batched_p, batched_l)  ],
                  "groundtruth": [[index_to_class[int(label.item())] for label in sentence if label != -100] for batched in labels for sentence in batched]}


        #true_labels = [str(label.item()) for batched in labels for sentence in batched for label in sentence if label != -100]
        #true_predictions = [str(pred.item()) for (batched_p, batched_l) in zip(predictions, labels) for (sentence_p, sentence_l) in zip(batched_p, batched_l) for (pred, label) in zip(sentence_p, sentence_l) if label!=-100 ]



        #print("true_label " + str(len(true_labels)) + " true_predictions "+str(len(true_predictions)))


        #predictions = utils.merge_predictions(gathered_outputs)
        name = self.eval_dataset.name
        scores = [0]

        #print(predictions)
        #print(predictions[0].shape)

        if self.trainer.is_global_zero:
            if not self.args.no_eval:
                epoch = self.trainer.current_epoch

                metric = evaluate.load("seqeval", cache_dir = self.args.cache_dir)

                predictions = [ preds + ['O'] * (len(full_groundtruth) - len(preds)) for (preds, full_groundtruth) in zip(output['predictions'], untruncateds)]
                all_metrics = metric.compute(predictions = predictions, references = untruncateds)

                #accuracy = sum([1 if p == l else 0 for (p, l) in zip(true_predictions, true_labels)])/len(true_labels)

                #precision = torch.eq(self.eval_dataset.data, predictions.argmax(dim = 1)).sum().float()/self.eval_dataset.data.numel()
                #self.print("Epoch: "+str(epoch)+" accuracy: "+str(accuracy))
                if self.args.eval_truncated:
                    report = classification_report(output['groundtruth'], output['predictions'], mode = 'strict', scheme = IOB2, output_dict = True)
                else:
                    #report = classification_report(predictions, untruncateds, output_dict = True)#, mode = 'strict', scheme = IOB2, output_dict = True)
                    report = classification_report(predictions, untruncateds, mode = 'strict', scheme = IOB2, output_dict = True) 
                self.print(report)
                #self.print("______________________________________________")
                #self.print(report_strict)
                scores = [report['micro avg']['f1-score']]
            with open(os.path.join(self.trainer.default_root_dir, f'prediction_{name}.json'), 'w') as f:
                    json.dump(output, f)
        
        dist.broadcast_object_list(scores)

        self.log('val/score', scores[0], prog_bar=True, rank_zero_only=True)
        self.validation_step_outputs.clear()
        
        

        self.validation_step_outputs.clear()

    def configure_optimizers(self):
        num_training_steps = self.trainer.num_training_steps
        
        self.print(f'Num training steps: {num_training_steps}')
        num_warmup_steps = int(num_training_steps * self.args.warmup_ratio)
        optimizer = torch.optim.AdamW(self.parameters(), lr=self.args.lr, weight_decay=self.args.weight_decay)
        scheduler = get_scheduler(self.args.scheduler, optimizer, num_warmup_steps, num_training_steps)
        return {'optimizer': optimizer, 'lr_scheduler': {'scheduler': scheduler, 'interval': 'step'}}

class NERDataModule(LightningDataModule):

    def __init__(self, args):
        super().__init__()
        self.args = args
        self.collate_fn = get_collate_fn()

    def prepare_data(self):
        args = self.args
        if args.do_train:
            self.train_dataset = NERDataset(args, args.train_file, split='train')
        if self.args.do_train or self.args.do_valid:
            self.val_dataset = NERDataset(args, args.valid_file, split='valid')
        if self.args.do_test:
            self.test_dataset = NERDataset(args, args.test_file, split='valid')
        
    def print_stats(self):
        if self.args.do_train:
            print(f'Train dataset: {len(self.train_dataset)}')
        if self.args.do_train or self.args.do_valid:
            print(f'Valid dataset: {len(self.val_dataset)}')
        if self.args.do_test:
            print(f'Test dataset: {len(self.test_dataset)}')

    
    def train_dataloader(self):
        return torch.utils.data.DataLoader(
            self.train_dataset, batch_size=self.args.batch_size, num_workers=self.args.num_workers,
            collate_fn=self.collate_fn)

    def val_dataloader(self):
        return torch.utils.data.DataLoader(
            self.val_dataset, batch_size=self.args.batch_size, num_workers=self.args.num_workers,
            collate_fn=self.collate_fn)
    

    def test_dataloader(self):
        return torch.utils.data.DataLoader(
            self.test_dataset, batch_size=self.args.batch_size, num_workers=self.args.num_workers,
            collate_fn=self.collate_fn)



class ModelCheckpoint(pl.callbacks.ModelCheckpoint):
    def _get_metric_interpolated_filepath_name(self, monitor_candidates, trainer, del_filepath=None) -> str:
        filepath = self.format_checkpoint_name(monitor_candidates)
        return filepath

def main():
    transformers.utils.logging.set_verbosity_error()
    args = get_args()

    pl.seed_everything(args.seed, workers = True)

    if args.do_train:
        model = ChemIENERecognizer(args)
    else:
        model = ChemIENERecognizer.load_from_checkpoint(os.path.join(args.save_path, 'checkpoints/best.ckpt'), strict=False,
                                        args=args)

    dm = NERDataModule(args)
    dm.prepare_data()
    dm.print_stats()

    checkpoint = ModelCheckpoint(monitor='val/score', mode='max', save_top_k=1, filename='best', save_last=True)
    # checkpoint = ModelCheckpoint(monitor=None, save_top_k=0, save_last=True)
    lr_monitor = LearningRateMonitor(logging_interval='step')
    logger = pl.loggers.TensorBoardLogger(args.save_path, name='', version='')

    trainer = pl.Trainer(
        strategy=DDPStrategy(find_unused_parameters=False),
        accelerator='gpu',
        precision = 16,
        devices=args.gpus,
        logger=logger,
        default_root_dir=args.save_path,
        callbacks=[checkpoint, lr_monitor],
        max_epochs=args.epochs,
        gradient_clip_val=args.max_grad_norm,
        accumulate_grad_batches=args.gradient_accumulation_steps,
        check_val_every_n_epoch=args.eval_per_epoch,
        log_every_n_steps=10,
        deterministic='warn')

    if args.do_train:
        trainer.num_training_steps = math.ceil(
            len(dm.train_dataset) / (args.batch_size * args.gpus * args.gradient_accumulation_steps)) * args.epochs
        model.eval_dataset = dm.val_dataset
        ckpt_path = os.path.join(args.save_path, 'checkpoints/last.ckpt') if args.resume else None
        trainer.fit(model, datamodule=dm, ckpt_path=ckpt_path)
        model = ChemIENERecognizer.load_from_checkpoint(checkpoint.best_model_path, args=args)

    if args.do_valid:

        model.eval_dataset = dm.val_dataset

        trainer.validate(model, datamodule=dm)

    if args.do_test:

        model.test_dataset = dm.test_dataset

        trainer.test(model, datamodule=dm)


if __name__ == "__main__":
    main()