Spaces:
Sleeping
Sleeping
File size: 13,889 Bytes
1f516b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
import os
import math
import json
import random
import argparse
import numpy as np
import time
import torch
from torch.profiler import profile, record_function, ProfilerActivity
import torch.distributed as dist
import pytorch_lightning as pl
from pytorch_lightning import LightningModule, LightningDataModule
from pytorch_lightning.callbacks import LearningRateMonitor
from pytorch_lightning.strategies.ddp import DDPStrategy
from transformers import get_scheduler
import transformers
from dataset import NERDataset, get_collate_fn
from model import build_model
from utils import get_class_to_index
import evaluate
from seqeval.metrics import accuracy_score
from seqeval.metrics import classification_report
from seqeval.metrics import f1_score
from seqeval.scheme import IOB2
def get_args(notebook=False):
parser = argparse.ArgumentParser()
parser.add_argument('--do_train', action='store_true')
parser.add_argument('--do_valid', action='store_true')
parser.add_argument('--do_test', action='store_true')
parser.add_argument('--fp16', action='store_true')
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--gpus', type=int, default=1)
parser.add_argument('--print_freq', type=int, default=200)
parser.add_argument('--debug', action='store_true')
parser.add_argument('--no_eval', action='store_true')
# Data
parser.add_argument('--data_path', type=str, default=None)
parser.add_argument('--image_path', type=str, default=None)
parser.add_argument('--train_file', type=str, default=None)
parser.add_argument('--valid_file', type=str, default=None)
parser.add_argument('--test_file', type=str, default=None)
parser.add_argument('--vocab_file', type=str, default=None)
parser.add_argument('--format', type=str, default='reaction')
parser.add_argument('--num_workers', type=int, default=8)
parser.add_argument('--input_size', type=int, default=224)
# Training
parser.add_argument('--epochs', type=int, default=8)
parser.add_argument('--batch_size', type=int, default=256)
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument('--weight_decay', type=float, default=0.05)
parser.add_argument('--max_grad_norm', type=float, default=5.)
parser.add_argument('--scheduler', type=str, choices=['cosine', 'constant'], default='cosine')
parser.add_argument('--warmup_ratio', type=float, default=0)
parser.add_argument('--gradient_accumulation_steps', type=int, default=1)
parser.add_argument('--load_path', type=str, default=None)
parser.add_argument('--load_encoder_only', action='store_true')
parser.add_argument('--train_steps_per_epoch', type=int, default=-1)
parser.add_argument('--eval_per_epoch', type=int, default=10)
parser.add_argument('--save_path', type=str, default='output/')
parser.add_argument('--save_mode', type=str, default='best', choices=['best', 'all', 'last'])
parser.add_argument('--load_ckpt', type=str, default='best')
parser.add_argument('--resume', action='store_true')
parser.add_argument('--num_train_example', type=int, default=None)
parser.add_argument('--roberta_checkpoint', type=str, default = "roberta-base")
parser.add_argument('--corpus', type=str, default = "chemu")
parser.add_argument('--cache_dir')
parser.add_argument('--eval_truncated', action='store_true')
parser.add_argument('--max_seq_length', type = int, default=512)
args = parser.parse_args([]) if notebook else parser.parse_args()
return args
class ChemIENERecognizer(LightningModule):
def __init__(self, args):
super().__init__()
self.args = args
self.model = build_model(args)
self.validation_step_outputs = []
def training_step(self, batch, batch_idx):
sentences, masks, refs,_ = batch
'''
print("sentences " + str(sentences))
print("sentence shape " + str(sentences.shape))
print("masks " + str(masks))
print("masks shape " + str(masks.shape))
print("refs " + str(refs))
print("refs shape " + str(refs.shape))
'''
loss, logits = self.model(input_ids=sentences, attention_mask=masks, labels=refs)
self.log('train/loss', loss)
self.log('lr', self.lr_schedulers().get_lr()[0], prog_bar=True, logger=False)
return loss
def validation_step(self, batch, batch_idx):
sentences, masks, refs, untruncated = batch
'''
print("sentences " + str(sentences))
print("sentence shape " + str(sentences.shape))
print("masks " + str(masks))
print("masks shape " + str(masks.shape))
print("refs " + str(refs))
print("refs shape " + str(refs.shape))
'''
logits = self.model(input_ids = sentences, attention_mask=masks)[0]
'''
print("logits " + str(logits))
print(sentences.shape)
print(logits.shape)
print(torch.eq(logits.argmax(dim = 2), refs).sum())
'''
self.validation_step_outputs.append((sentences.to("cpu"), logits.argmax(dim = 2).to("cpu"), refs.to('cpu'), untruncated.to("cpu")))
def on_validation_epoch_end(self):
if self.trainer.num_devices > 1:
gathered_outputs = [None for i in range(self.trainer.num_devices)]
dist.all_gather_object(gathered_outputs, self.validation_step_outputs)
gathered_outputs = sum(gathered_outputs, [])
else:
gathered_outputs = self.validation_step_outputs
sentences = [list(output[0]) for output in gathered_outputs]
class_to_index = get_class_to_index(self.args.corpus)
index_to_class = {class_to_index[key]: key for key in class_to_index}
predictions = [list(output[1]) for output in gathered_outputs]
labels = [list(output[2]) for output in gathered_outputs]
untruncateds = [list(output[3]) for output in gathered_outputs]
untruncateds = [[index_to_class[int(label.item())] for label in sentence if int(label.item()) != -100] for batched in untruncateds for sentence in batched]
output = {"sentences": [[int(word.item()) for (word, label) in zip(sentence_w, sentence_l) if label != -100] for (batched_w, batched_l) in zip(sentences, labels) for (sentence_w, sentence_l) in zip(batched_w, batched_l) ],
"predictions": [[index_to_class[int(pred.item())] for (pred, label) in zip(sentence_p, sentence_l) if label!=-100] for (batched_p, batched_l) in zip(predictions, labels) for (sentence_p, sentence_l) in zip(batched_p, batched_l) ],
"groundtruth": [[index_to_class[int(label.item())] for label in sentence if label != -100] for batched in labels for sentence in batched]}
#true_labels = [str(label.item()) for batched in labels for sentence in batched for label in sentence if label != -100]
#true_predictions = [str(pred.item()) for (batched_p, batched_l) in zip(predictions, labels) for (sentence_p, sentence_l) in zip(batched_p, batched_l) for (pred, label) in zip(sentence_p, sentence_l) if label!=-100 ]
#print("true_label " + str(len(true_labels)) + " true_predictions "+str(len(true_predictions)))
#predictions = utils.merge_predictions(gathered_outputs)
name = self.eval_dataset.name
scores = [0]
#print(predictions)
#print(predictions[0].shape)
if self.trainer.is_global_zero:
if not self.args.no_eval:
epoch = self.trainer.current_epoch
metric = evaluate.load("seqeval", cache_dir = self.args.cache_dir)
predictions = [ preds + ['O'] * (len(full_groundtruth) - len(preds)) for (preds, full_groundtruth) in zip(output['predictions'], untruncateds)]
all_metrics = metric.compute(predictions = predictions, references = untruncateds)
#accuracy = sum([1 if p == l else 0 for (p, l) in zip(true_predictions, true_labels)])/len(true_labels)
#precision = torch.eq(self.eval_dataset.data, predictions.argmax(dim = 1)).sum().float()/self.eval_dataset.data.numel()
#self.print("Epoch: "+str(epoch)+" accuracy: "+str(accuracy))
if self.args.eval_truncated:
report = classification_report(output['groundtruth'], output['predictions'], mode = 'strict', scheme = IOB2, output_dict = True)
else:
#report = classification_report(predictions, untruncateds, output_dict = True)#, mode = 'strict', scheme = IOB2, output_dict = True)
report = classification_report(predictions, untruncateds, mode = 'strict', scheme = IOB2, output_dict = True)
self.print(report)
#self.print("______________________________________________")
#self.print(report_strict)
scores = [report['micro avg']['f1-score']]
with open(os.path.join(self.trainer.default_root_dir, f'prediction_{name}.json'), 'w') as f:
json.dump(output, f)
dist.broadcast_object_list(scores)
self.log('val/score', scores[0], prog_bar=True, rank_zero_only=True)
self.validation_step_outputs.clear()
self.validation_step_outputs.clear()
def configure_optimizers(self):
num_training_steps = self.trainer.num_training_steps
self.print(f'Num training steps: {num_training_steps}')
num_warmup_steps = int(num_training_steps * self.args.warmup_ratio)
optimizer = torch.optim.AdamW(self.parameters(), lr=self.args.lr, weight_decay=self.args.weight_decay)
scheduler = get_scheduler(self.args.scheduler, optimizer, num_warmup_steps, num_training_steps)
return {'optimizer': optimizer, 'lr_scheduler': {'scheduler': scheduler, 'interval': 'step'}}
class NERDataModule(LightningDataModule):
def __init__(self, args):
super().__init__()
self.args = args
self.collate_fn = get_collate_fn()
def prepare_data(self):
args = self.args
if args.do_train:
self.train_dataset = NERDataset(args, args.train_file, split='train')
if self.args.do_train or self.args.do_valid:
self.val_dataset = NERDataset(args, args.valid_file, split='valid')
if self.args.do_test:
self.test_dataset = NERDataset(args, args.test_file, split='valid')
def print_stats(self):
if self.args.do_train:
print(f'Train dataset: {len(self.train_dataset)}')
if self.args.do_train or self.args.do_valid:
print(f'Valid dataset: {len(self.val_dataset)}')
if self.args.do_test:
print(f'Test dataset: {len(self.test_dataset)}')
def train_dataloader(self):
return torch.utils.data.DataLoader(
self.train_dataset, batch_size=self.args.batch_size, num_workers=self.args.num_workers,
collate_fn=self.collate_fn)
def val_dataloader(self):
return torch.utils.data.DataLoader(
self.val_dataset, batch_size=self.args.batch_size, num_workers=self.args.num_workers,
collate_fn=self.collate_fn)
def test_dataloader(self):
return torch.utils.data.DataLoader(
self.test_dataset, batch_size=self.args.batch_size, num_workers=self.args.num_workers,
collate_fn=self.collate_fn)
class ModelCheckpoint(pl.callbacks.ModelCheckpoint):
def _get_metric_interpolated_filepath_name(self, monitor_candidates, trainer, del_filepath=None) -> str:
filepath = self.format_checkpoint_name(monitor_candidates)
return filepath
def main():
transformers.utils.logging.set_verbosity_error()
args = get_args()
pl.seed_everything(args.seed, workers = True)
if args.do_train:
model = ChemIENERecognizer(args)
else:
model = ChemIENERecognizer.load_from_checkpoint(os.path.join(args.save_path, 'checkpoints/best.ckpt'), strict=False,
args=args)
dm = NERDataModule(args)
dm.prepare_data()
dm.print_stats()
checkpoint = ModelCheckpoint(monitor='val/score', mode='max', save_top_k=1, filename='best', save_last=True)
# checkpoint = ModelCheckpoint(monitor=None, save_top_k=0, save_last=True)
lr_monitor = LearningRateMonitor(logging_interval='step')
logger = pl.loggers.TensorBoardLogger(args.save_path, name='', version='')
trainer = pl.Trainer(
strategy=DDPStrategy(find_unused_parameters=False),
accelerator='gpu',
precision = 16,
devices=args.gpus,
logger=logger,
default_root_dir=args.save_path,
callbacks=[checkpoint, lr_monitor],
max_epochs=args.epochs,
gradient_clip_val=args.max_grad_norm,
accumulate_grad_batches=args.gradient_accumulation_steps,
check_val_every_n_epoch=args.eval_per_epoch,
log_every_n_steps=10,
deterministic='warn')
if args.do_train:
trainer.num_training_steps = math.ceil(
len(dm.train_dataset) / (args.batch_size * args.gpus * args.gradient_accumulation_steps)) * args.epochs
model.eval_dataset = dm.val_dataset
ckpt_path = os.path.join(args.save_path, 'checkpoints/last.ckpt') if args.resume else None
trainer.fit(model, datamodule=dm, ckpt_path=ckpt_path)
model = ChemIENERecognizer.load_from_checkpoint(checkpoint.best_model_path, args=args)
if args.do_valid:
model.eval_dataset = dm.val_dataset
trainer.validate(model, datamodule=dm)
if args.do_test:
model.test_dataset = dm.test_dataset
trainer.test(model, datamodule=dm)
if __name__ == "__main__":
main()
|