Spaces:
Running
Running
| #!/usr/bin/env python | |
| from __future__ import annotations | |
| import argparse | |
| import functools | |
| import os | |
| import pathlib | |
| import sys | |
| import tarfile | |
| from typing import Callable | |
| if os.environ.get('SYSTEM') == 'spaces': | |
| os.system("sed -i '10,17d' DualStyleGAN/model/stylegan/op/fused_act.py") | |
| os.system("sed -i '10,17d' DualStyleGAN/model/stylegan/op/upfirdn2d.py") | |
| sys.path.insert(0, 'DualStyleGAN') | |
| import dlib | |
| import gradio as gr | |
| import huggingface_hub | |
| import numpy as np | |
| import PIL.Image | |
| import torch | |
| import torch.nn as nn | |
| import torchvision.transforms as T | |
| from model.dualstylegan import DualStyleGAN | |
| from model.encoder.align_all_parallel import align_face | |
| from model.encoder.psp import pSp | |
| from util import load_image, visualize | |
| TOKEN = os.environ['TOKEN'] | |
| MODEL_REPO = 'hysts/DualStyleGAN' | |
| def parse_args() -> argparse.Namespace: | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--device', type=str, default='cpu') | |
| parser.add_argument('--theme', type=str) | |
| parser.add_argument('--live', action='store_true') | |
| parser.add_argument('--share', action='store_true') | |
| parser.add_argument('--port', type=int) | |
| parser.add_argument('--disable-queue', | |
| dest='enable_queue', | |
| action='store_false') | |
| parser.add_argument('--allow-flagging', type=str, default='never') | |
| parser.add_argument('--allow-screenshot', action='store_true') | |
| return parser.parse_args() | |
| def download_cartoon_images() -> None: | |
| image_dir = pathlib.Path('cartoon') | |
| if not image_dir.exists(): | |
| path = huggingface_hub.hf_hub_download('hysts/DualStyleGAN-Cartoon', | |
| 'cartoon.tar.gz', | |
| repo_type='dataset', | |
| use_auth_token=TOKEN) | |
| with tarfile.open(path) as f: | |
| f.extractall() | |
| def load_encoder(device: torch.device) -> nn.Module: | |
| ckpt_path = huggingface_hub.hf_hub_download(MODEL_REPO, | |
| 'models/encoder.pt', | |
| use_auth_token=TOKEN) | |
| ckpt = torch.load(ckpt_path, map_location='cpu') | |
| opts = ckpt['opts'] | |
| opts['device'] = device.type | |
| opts['checkpoint_path'] = ckpt_path | |
| opts = argparse.Namespace(**opts) | |
| model = pSp(opts) | |
| model.to(device) | |
| model.eval() | |
| return model | |
| def load_generator(style_type: str, device: torch.device) -> nn.Module: | |
| model = DualStyleGAN(1024, 512, 8, 2, res_index=6) | |
| ckpt_path = huggingface_hub.hf_hub_download( | |
| MODEL_REPO, f'models/{style_type}/generator.pt', use_auth_token=TOKEN) | |
| ckpt = torch.load(ckpt_path, map_location='cpu') | |
| model.load_state_dict(ckpt['g_ema']) | |
| model.to(device) | |
| model.eval() | |
| return model | |
| def load_exstylecode(style_type: str) -> dict[str, np.ndarray]: | |
| if style_type in ['cartoon', 'caricature', 'anime']: | |
| filename = 'refined_exstyle_code.npy' | |
| else: | |
| filename = 'exstyle_code.npy' | |
| path = huggingface_hub.hf_hub_download(MODEL_REPO, | |
| f'models/{style_type}/{filename}', | |
| use_auth_token=TOKEN) | |
| exstyles = np.load(path, allow_pickle=True).item() | |
| return exstyles | |
| def create_transform() -> Callable: | |
| transform = T.Compose([ | |
| T.Resize(256), | |
| T.CenterCrop(256), | |
| T.ToTensor(), | |
| T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), | |
| ]) | |
| return transform | |
| def create_dlib_landmark_model(): | |
| path = huggingface_hub.hf_hub_download( | |
| 'hysts/dlib_face_landmark_model', | |
| 'shape_predictor_68_face_landmarks.dat', | |
| use_auth_token=TOKEN) | |
| return dlib.shape_predictor(path) | |
| def denormalize(tensor: torch.Tensor) -> torch.Tensor: | |
| return torch.clamp((tensor + 1) / 2 * 255, 0, 255).to(torch.uint8) | |
| def postprocess(tensor: torch.Tensor) -> PIL.Image.Image: | |
| tensor = denormalize(tensor) | |
| image = tensor.cpu().numpy().transpose(1, 2, 0) | |
| return PIL.Image.fromarray(image) | |
| def run( | |
| image, | |
| style_id: int, | |
| dlib_landmark_model, | |
| encoder: nn.Module, | |
| generator: nn.Module, | |
| exstyles: dict[str, np.ndarray], | |
| transform: Callable, | |
| device: torch.device, | |
| style_image_dir: pathlib.Path, | |
| ) -> tuple[PIL.Image.Image, PIL.Image.Image, PIL.Image.Image, PIL.Image.Image]: | |
| stylename = list(exstyles.keys())[style_id] | |
| image = align_face(filepath=image.name, predictor=dlib_landmark_model) | |
| input_data = transform(image).unsqueeze(0).to(device) | |
| img_rec, instyle = encoder(input_data, | |
| randomize_noise=False, | |
| return_latents=True, | |
| z_plus_latent=True, | |
| return_z_plus_latent=True, | |
| resize=False) | |
| img_rec = torch.clamp(img_rec.detach(), -1, 1) | |
| latent = torch.tensor(exstyles[stylename]).repeat(2, 1, 1).to(device) | |
| # latent[0] for both color and structrue transfer and latent[1] for only structrue transfer | |
| latent[1, 7:18] = instyle[0, 7:18] | |
| exstyle = generator.generator.style( | |
| latent.reshape(latent.shape[0] * latent.shape[1], | |
| latent.shape[2])).reshape(latent.shape) | |
| img_gen, _ = generator([instyle.repeat(2, 1, 1)], | |
| exstyle, | |
| z_plus_latent=True, | |
| truncation=0.7, | |
| truncation_latent=0, | |
| use_res=True, | |
| interp_weights=[0.6] * 7 + [1] * 11) | |
| img_gen = torch.clamp(img_gen.detach(), -1, 1) | |
| # deactivate color-related layers by setting w_c = 0 | |
| img_gen2, _ = generator([instyle], | |
| exstyle[0:1], | |
| z_plus_latent=True, | |
| truncation=0.7, | |
| truncation_latent=0, | |
| use_res=True, | |
| interp_weights=[0.6] * 7 + [0] * 11) | |
| img_gen2 = torch.clamp(img_gen2.detach(), -1, 1) | |
| img_rec = postprocess(img_rec[0]) | |
| img_gen0 = postprocess(img_gen[0]) | |
| img_gen1 = postprocess(img_gen[1]) | |
| img_gen2 = postprocess(img_gen2[0]) | |
| style_image = PIL.Image.open(style_image_dir / stylename) | |
| return image, style_image, img_rec, img_gen0, img_gen1, img_gen2 | |
| def main(): | |
| gr.close_all() | |
| args = parse_args() | |
| device = torch.device(args.device) | |
| style_type = 'cartoon' | |
| style_image_dir = pathlib.Path(style_type) | |
| download_cartoon_images() | |
| dlib_landmark_model = create_dlib_landmark_model() | |
| encoder = load_encoder(device) | |
| generator = load_generator(style_type, device) | |
| exstyles = load_exstylecode(style_type) | |
| transform = create_transform() | |
| func = functools.partial(run, | |
| dlib_landmark_model=dlib_landmark_model, | |
| encoder=encoder, | |
| generator=generator, | |
| exstyles=exstyles, | |
| transform=transform, | |
| device=device, | |
| style_image_dir=style_image_dir) | |
| func = functools.update_wrapper(func, run) | |
| repo_url = 'https://github.com/williamyang1991/DualStyleGAN' | |
| title = 'williamyang1991/DualStyleGAN' | |
| description = f"""A demo for {repo_url} | |
| You can select style images from the table below. | |
| """ | |
| article = '' | |
| image_paths = sorted(pathlib.Path('images').glob('*')) | |
| examples = [[path.as_posix(), 26] for path in image_paths] | |
| gr.Interface( | |
| func, | |
| [ | |
| gr.inputs.Image(type='file', label='Image'), | |
| gr.inputs.Slider( | |
| 0, 316, step=1, default=26, label='Style Image Index'), | |
| ], | |
| [ | |
| gr.outputs.Image(type='pil', label='Aligned Face'), | |
| gr.outputs.Image(type='pil', label='Selected Style Image'), | |
| gr.outputs.Image(type='pil', label='Reconstructed'), | |
| gr.outputs.Image(type='pil', label='Result 1'), | |
| gr.outputs.Image(type='pil', label='Result 2'), | |
| gr.outputs.Image(type='pil', label='Result 3'), | |
| ], | |
| examples=examples, | |
| theme=args.theme, | |
| title=title, | |
| description=description, | |
| article=article, | |
| allow_screenshot=args.allow_screenshot, | |
| allow_flagging=args.allow_flagging, | |
| live=args.live, | |
| ).launch( | |
| enable_queue=args.enable_queue, | |
| server_port=args.port, | |
| share=args.share, | |
| ) | |
| if __name__ == '__main__': | |
| main() | |