File size: 6,426 Bytes
9bdaa77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# Copyright 2022 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""MLP to compute basic linear functions of one-hot encoded integers."""

from typing import Callable

import numpy as np

from tracr.craft import bases
from tracr.craft import transformers
from tracr.craft import vectorspace_fns

_ONE_SPACE = bases.VectorSpaceWithBasis.from_names(["one"])


def map_categorical_mlp(
    input_space: bases.VectorSpaceWithBasis,
    output_space: bases.VectorSpaceWithBasis,
    operation: Callable[[bases.BasisDirection], bases.BasisDirection],
) -> transformers.MLP:
  """Returns an MLP that encodes any categorical function of a single variable f(x).

  The hidden layer is the identity and output combines this with a lookup table
    output_k = sum(f(i)*input_i for all i in input space)

  Args:
    input_space: space containing the input x.
    output_space: space containing possible outputs.
    operation: A function operating on basis directions.
  """

  def operation_fn(direction):
    if direction in input_space:
      output_direction = operation(direction)
      if output_direction in output_space:
        return output_space.vector_from_basis_direction(output_direction)
    return output_space.null_vector()

  first_layer = vectorspace_fns.Linear.from_action(input_space, output_space,
                                                   operation_fn)

  second_layer = vectorspace_fns.project(output_space, output_space)

  return transformers.MLP(first_layer, second_layer)


def map_categorical_to_numerical_mlp(
    input_space: bases.VectorSpaceWithBasis,
    output_space: bases.VectorSpaceWithBasis,
    operation: Callable[[bases.Value], float],
) -> transformers.MLP:
  """Returns an MLP to compute f(x) from a categorical to a numerical variable.

  The hidden layer is the identity and output combines this with a lookup table
    output = sum(f(i)*input_i for all i in input space)

  Args:
    input_space: Vector space containing the input x.
    output_space: Vector space to write the numerical output to.
    operation: A function operating on basis directions.
  """
  bases.ensure_dims(output_space, num_dims=1, name="output_space")
  out_vec = output_space.vector_from_basis_direction(output_space.basis[0])

  def operation_fn(direction):
    if direction in input_space:
      return operation(direction.value) * out_vec
    return output_space.null_vector()

  first_layer = vectorspace_fns.Linear.from_action(input_space, output_space,
                                                   operation_fn)

  second_layer = vectorspace_fns.project(output_space, output_space)

  return transformers.MLP(first_layer, second_layer)


def sequence_map_categorical_mlp(
    input1_space: bases.VectorSpaceWithBasis,
    input2_space: bases.VectorSpaceWithBasis,
    output_space: bases.VectorSpaceWithBasis,
    operation: Callable[[bases.BasisDirection, bases.BasisDirection],
                        bases.BasisDirection],
    one_space: bases.VectorSpaceWithBasis = _ONE_SPACE,
    hidden_name: bases.Name = "__hidden__",
) -> transformers.MLP:
  """Returns an MLP that encodes a categorical function of two variables f(x, y).

  The hidden layer of the MLP computes the logical and of all input directions
    hidden_i_j = ReLU(x_i+x_j-1)

  And the output combines this with a lookup table
    output_k = sum(f(i, j)*hidden_i_j for all i,j in input space)

  Args:
    input1_space: Vector space containing the input x.
    input2_space: Vector space containing the input y.
    output_space: Vector space to write outputs to.
    operation: A function operating on basis directions.
    one_space: a reserved 1-d space that always contains a 1.
    hidden_name: Name for hidden dimensions.
  """
  bases.ensure_dims(one_space, num_dims=1, name="one_space")

  if not set(input1_space.basis).isdisjoint(input2_space.basis):
    raise ValueError("Input spaces to a SequenceMap must be disjoint. "
                     "If input spaces are the same, use Map instead!")

  input_space = bases.direct_sum(input1_space, input2_space, one_space)

  def to_hidden(x, y):
    return bases.BasisDirection(hidden_name, (x.name, x.value, y.name, y.value))

  def from_hidden(h):
    x_name, x_value, y_name, y_value = h.value
    x_dir = bases.BasisDirection(x_name, x_value)
    y_dir = bases.BasisDirection(y_name, y_value)
    return x_dir, y_dir

  hidden_dir = []
  for dir1 in input1_space.basis:
    for dir2 in input2_space.basis:
      hidden_dir.append(to_hidden(dir1, dir2))
  hidden_space = bases.VectorSpaceWithBasis(hidden_dir)

  def logical_and(direction):
    if direction in one_space:
      out = bases.VectorInBasis(hidden_space.basis,
                                -np.ones(hidden_space.num_dims))
    elif direction in input1_space:
      dir1 = direction
      out = hidden_space.null_vector()
      for dir2 in input2_space.basis:
        out += hidden_space.vector_from_basis_direction(to_hidden(dir1, dir2))
    else:
      dir2 = direction
      out = hidden_space.null_vector()
      for dir1 in input1_space.basis:
        out += hidden_space.vector_from_basis_direction(to_hidden(dir1, dir2))
    return out

  first_layer = vectorspace_fns.Linear.from_action(input_space, hidden_space,
                                                   logical_and)

  def operation_fn(direction):
    dir1, dir2 = from_hidden(direction)
    output_direction = operation(dir1, dir2)
    if output_direction in output_space:
      return output_space.vector_from_basis_direction(output_direction)
    else:
      return output_space.null_vector()

  second_layer = vectorspace_fns.Linear.from_action(hidden_space, output_space,
                                                    operation_fn)

  return transformers.MLP(first_layer, second_layer)