Spaces:
Sleeping
Sleeping
File size: 13,518 Bytes
9bdaa77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
# Copyright 2022 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""MLPs to compute arbitrary numerical functions by discretising."""
import dataclasses
from typing import Callable, Iterable
from tracr.craft import bases
from tracr.craft import transformers
from tracr.craft import vectorspace_fns
from tracr.utils import errors
@dataclasses.dataclass
class DiscretisingLayerMaterials:
"""Provides components for a hidden layer that discretises the input.
Attributes:
action: Function acting on basis directions that defines the computation.
hidden_space: Vector space of the hidden representation of the layer.
output_values: Set of output values that correspond to the discretisation.
"""
action: Callable[[bases.BasisDirection], bases.VectorInBasis]
hidden_space: bases.VectorSpaceWithBasis
output_values: list[float]
def _get_discretising_layer(input_value_set: Iterable[float],
f: Callable[[float],
float], hidden_name: bases.Name,
one_direction: bases.BasisDirection,
large_number: float) -> DiscretisingLayerMaterials:
"""Creates a hidden layer that discretises the input of f(x) into a value set.
The input is split up into a distinct region around each value in
`input_value_set`:
elements of value set: v0 | v1 | v2 | v3 | v4 | ...
thresholds: t0 t1 t2 t3 t4
The hidden layer has two activations per threshold:
hidden_k_1 = ReLU(L * (x - threshold[k]) + 1)
hidden_k_2 = ReLU(L * (x - threshold[k]))
Note that hidden_k_1 - hidden_k_2 is:
1 if x >= threshold[k] + 1/L
0 if x <= threshold[k]
between 0 and 1 if threshold[k] < x < threshold[k] + 1/L
So as long as we choose L a big enough number, we have
hidden_k_1 - hidden_k_2 = 1 if x >= threshold[k].
i.e. we know in which region the input value is.
Args:
input_value_set: Set of discrete input values.
f: Function to approximate.
hidden_name: Name for hidden dimensions.
one_direction: Auxiliary dimension that must contain 1 in the input.
large_number: Large number L that determines accuracy of the computation.
Returns:
DiscretisingLayerMaterials containing all components for the layer.
"""
output_values, sorted_values = [], []
for x in sorted(input_value_set):
res = errors.ignoring_arithmetic_errors(f)(x)
if res is not None:
output_values.append(res)
sorted_values.append(x)
num_vals = len(sorted_values)
value_thresholds = [
(sorted_values[i] + sorted_values[i + 1]) / 2 for i in range(num_vals - 1)
]
hidden_directions = [bases.BasisDirection(f"{hidden_name}start")]
for k in range(1, num_vals):
dir0 = bases.BasisDirection(hidden_name, (k, 0))
dir1 = bases.BasisDirection(hidden_name, (k, 1))
hidden_directions.extend([dir0, dir1])
hidden_space = bases.VectorSpaceWithBasis(hidden_directions)
def action(direction: bases.BasisDirection) -> bases.VectorInBasis:
# hidden_k_0 = ReLU(L * (x - threshold[k]) + 1)
# hidden_k_1 = ReLU(L * (x - threshold[k]))
if direction == one_direction:
hidden = hidden_space.vector_from_basis_direction(
bases.BasisDirection(f"{hidden_name}start"))
else:
hidden = hidden_space.null_vector()
for k in range(1, num_vals):
vec0 = hidden_space.vector_from_basis_direction(
bases.BasisDirection(hidden_name, (k, 0)))
vec1 = hidden_space.vector_from_basis_direction(
bases.BasisDirection(hidden_name, (k, 1)))
if direction == one_direction:
hidden += (1 - large_number * value_thresholds[k - 1]) * vec0
hidden -= large_number * value_thresholds[k - 1] * vec1
else:
hidden += large_number * vec0 + large_number * vec1
return hidden
return DiscretisingLayerMaterials(
action=action, hidden_space=hidden_space, output_values=output_values)
def map_numerical_mlp(
f: Callable[[float], float],
input_space: bases.VectorSpaceWithBasis,
output_space: bases.VectorSpaceWithBasis,
input_value_set: Iterable[float],
one_space: bases.VectorSpaceWithBasis,
large_number: float = 100,
hidden_name: bases.Name = "__hidden__",
) -> transformers.MLP:
"""Returns an MLP that encodes any function of a single variable f(x).
This is implemented by discretising the input according to input_value_set
and defining thresholds that determine which part of the input range will
is allocated to which value in input_value_set.
elements of value set: v0 | v1 | v2 | v3 | v4 | ...
thresholds: t0 t1 t2 t3 t4
The MLP computes two hidden activations per threshold:
hidden_k_0 = ReLU(L * (x - threshold[k]) + 1)
hidden_k_1 = ReLU(L * (x - threshold[k]))
Note that hidden_k_1 - hidden_k_2 is:
1 if x >= threshold[k] + 1/L
0 if x <= threshold[k]
between 0 and 1 if threshold[k] < x < threshold[k] + 1/L
So as long as we choose L a big enough number, we have
hidden_k_0 - hidden_k_1 = 1 if x >= threshold[k].
The MLP then computes the output as:
output = f(input[0]) +
sum((hidden_k_0 - hidden_k_1) * (f(input[k]) - f(input[k-1]))
for all k=0,1,...)
This sum will be (by a telescoping sums argument)
f(input[0]) if x <= threshold[0]
f(input[k]) if threshold[k-1] < x <= threshold[k] for some other k
f(input[-1]) if x > threshold[-1]
which approximates f() up to an accuracy given by input_value_set and L.
Args:
f: Function to approximate.
input_space: 1-d vector space that encodes the input x.
output_space: 1-d vector space to write the output to.
input_value_set: Set of values the input can take.
one_space: Auxiliary 1-d vector space that must contain 1 in the input.
large_number: Large number L that determines accuracy of the computation.
Note that too large values of L can lead to numerical issues, particularly
during inference on GPU/TPU.
hidden_name: Name for hidden dimensions.
"""
bases.ensure_dims(input_space, num_dims=1, name="input_space")
bases.ensure_dims(output_space, num_dims=1, name="output_space")
bases.ensure_dims(one_space, num_dims=1, name="one_space")
input_space = bases.join_vector_spaces(input_space, one_space)
out_vec = output_space.vector_from_basis_direction(output_space.basis[0])
discretising_layer = _get_discretising_layer(
input_value_set=input_value_set,
f=f,
hidden_name=hidden_name,
one_direction=one_space.basis[0],
large_number=large_number)
first_layer = vectorspace_fns.Linear.from_action(
input_space, discretising_layer.hidden_space, discretising_layer.action)
def second_layer_action(
direction: bases.BasisDirection) -> bases.VectorInBasis:
# output = sum(
# (hidden_k_0 - hidden_k_1) * (f(input[k]) - f(input[k-1]))
# for all k)
if direction.name == f"{hidden_name}start":
return discretising_layer.output_values[0] * out_vec
k, i = direction.value
# add hidden_k_0 and subtract hidden_k_1
sign = {0: 1, 1: -1}[i]
return sign * (discretising_layer.output_values[k] -
discretising_layer.output_values[k - 1]) * out_vec
second_layer = vectorspace_fns.Linear.from_action(
discretising_layer.hidden_space, output_space, second_layer_action)
return transformers.MLP(first_layer, second_layer)
def map_numerical_to_categorical_mlp(
f: Callable[[float], float],
input_space: bases.VectorSpaceWithBasis,
output_space: bases.VectorSpaceWithBasis,
input_value_set: Iterable[float],
one_space: bases.VectorSpaceWithBasis,
large_number: float = 100,
hidden_name: bases.Name = "__hidden__",
) -> transformers.MLP:
"""Returns an MLP to compute f(x) from a numerical to a categorical variable.
Uses a set of possible output values, and rounds f(x) to the closest value
in this set to create a categorical output variable.
The output is discretised the same way as in `map_numerical_mlp`.
Args:
f: Function to approximate.
input_space: 1-d vector space that encodes the input x.
output_space: n-d vector space to write categorical output to. The output
directions need to encode the possible output values.
input_value_set: Set of values the input can take.
one_space: Auxiliary 1-d space that must contain 1 in the input.
large_number: Large number L that determines accuracy of the computation.
hidden_name: Name for hidden dimensions.
"""
bases.ensure_dims(input_space, num_dims=1, name="input_space")
bases.ensure_dims(one_space, num_dims=1, name="one_space")
input_space = bases.join_vector_spaces(input_space, one_space)
vec_by_out_val = dict()
for d in output_space.basis:
# TODO(b/255937603): Do a similar assert in other places where we expect
# categorical basis directions to encode values.
assert d.value is not None, ("output directions need to encode "
"possible output values")
vec_by_out_val[d.value] = output_space.vector_from_basis_direction(d)
discretising_layer = _get_discretising_layer(
input_value_set=input_value_set,
f=f,
hidden_name=hidden_name,
one_direction=one_space.basis[0],
large_number=large_number)
assert set(discretising_layer.output_values).issubset(
set(vec_by_out_val.keys()))
first_layer = vectorspace_fns.Linear.from_action(
input_space, discretising_layer.hidden_space, discretising_layer.action)
def second_layer_action(
direction: bases.BasisDirection) -> bases.VectorInBasis:
"""Computes output value and returns corresponding output direction."""
if direction.name == f"{hidden_name}start":
return vec_by_out_val[discretising_layer.output_values[0]]
else:
k, i = direction.value
# add hidden_k_0 and subtract hidden_k_1
sign = {0: 1, 1: -1}[i]
out_k = discretising_layer.output_values[k]
out_k_m_1 = discretising_layer.output_values[k - 1]
return sign * (vec_by_out_val[out_k] - vec_by_out_val[out_k_m_1])
second_layer = vectorspace_fns.Linear.from_action(
discretising_layer.hidden_space, output_space, second_layer_action)
return transformers.MLP(first_layer, second_layer)
def linear_sequence_map_numerical_mlp(
input1_basis_direction: bases.BasisDirection,
input2_basis_direction: bases.BasisDirection,
output_basis_direction: bases.BasisDirection,
input1_factor: float,
input2_factor: float,
hidden_name: bases.Name = "__hidden__",
) -> transformers.MLP:
"""Returns an MLP that encodes a linear function f(x, y) = a*x + b*y.
Args:
input1_basis_direction: Basis direction that encodes the input x.
input2_basis_direction: Basis direction that encodes the input y.
output_basis_direction: Basis direction to write the output to.
input1_factor: Linear factor a for input x.
input2_factor: Linear factor a for input y.
hidden_name: Name for hidden dimensions.
"""
input_space = bases.VectorSpaceWithBasis(
[input1_basis_direction, input2_basis_direction])
output_space = bases.VectorSpaceWithBasis([output_basis_direction])
out_vec = output_space.vector_from_basis_direction(output_basis_direction)
hidden_directions = [
bases.BasisDirection(f"{hidden_name}x", 1),
bases.BasisDirection(f"{hidden_name}x", -1),
bases.BasisDirection(f"{hidden_name}y", 1),
bases.BasisDirection(f"{hidden_name}y", -1)
]
hidden_space = bases.VectorSpaceWithBasis(hidden_directions)
x_pos_vec, x_neg_vec, y_pos_vec, y_neg_vec = (
hidden_space.vector_from_basis_direction(d) for d in hidden_directions)
def first_layer_action(
direction: bases.BasisDirection) -> bases.VectorInBasis:
output = hidden_space.null_vector()
if direction == input1_basis_direction:
output += x_pos_vec - x_neg_vec
if direction == input2_basis_direction:
output += y_pos_vec - y_neg_vec
return output
first_layer = vectorspace_fns.Linear.from_action(input_space, hidden_space,
first_layer_action)
def second_layer_action(
direction: bases.BasisDirection) -> bases.VectorInBasis:
if direction.name == f"{hidden_name}x":
return input1_factor * direction.value * out_vec
if direction.name == f"{hidden_name}y":
return input2_factor * direction.value * out_vec
return output_space.null_vector()
second_layer = vectorspace_fns.Linear.from_action(hidden_space, output_space,
second_layer_action)
return transformers.MLP(first_layer, second_layer)
|